Snouts, pugs, daggers and leaf eating wainscots – and all because of the sharks!

I joined Twitter seven years ago,  and I was, and continue to be amazed by how many people out there run moth traps*. One of the many side-effects of the Covid-19 crisis is an increase in the number of trappers; every day my Twitter feed is filled with pictures of their more notable specimens.  The other day in response to this deluge of moths, I remarked on the fact that the common names of moths range from the extremely prosaic, to completely lyrical flights of fancy. Take for example, the baldly descriptive Orange Underwing and the gloriously named Merveille du Jour.  To these I could add the beautiful, but literally named, Green Silver Lines and the bizarrely named Purple Thorn.

Orange Underwing and the Merveille de Jour.

Green Silver Lines and a Purple Thorn. I see no purple 🙂

Now, I have seen a mouse moth in action, so I totally get its name. On the other hand, while browsing Paul Waring and Martin Townsend’s excellent Field Guide (I was trying to identify a Yellow Shell I had come across in the garden), I noticed a mention to the sharks. Intrigued, I skipped down to the species notes to see why they were called sharks. The answer was simple; Paul and Martin say it is the way their wings are folded at rest to give the appearance of  a dorsal fin. Looking at the picture, I could live with that, and it also gave me an idea.

As loyal readers will know, I have a penchant for delving into insect names.  Who could forget my in-depth investigation into the naming of thrips or the mystery of the wheat dolphin? I figured that here was yet another subject for a blog. I had, however, been beaten to the punch!  Naturalist Extraordinaire, Peter Marren has written a whole book about the often, gnomic names of Lepidoptera :-). Having discovered it, I had, of course, to buy it. You will be glad to know, that even though it cost me the princely sum of £20, and although as a Yorkshireman, I toyed with the idea of getting a second hand copy, I don’t regret the purchase one iota.

Peter Marren (2019) Little Toller Books £20

It is a lovely little book. It is amusingly written, brimming with history and filled with factoids over which any entomologist setting a Pub Quiz will drool.  Take my word for it, well worth the investment.  My only complaint is that there aren’t enough colour plates, but that is only a minor quibble. I don’t want to stop you buying Peter’s book so I am only treating you to a few of the gems contained therein.

I’ll start with the more obvious ones. There is a group of moths within the Erebidae (they were Noctuids when I was student) known as the snouts.  When you look at them from above it is obvious why. They have long palps that protrude very noticeably, forming a very distinctive snout. Just to confuse you, some pyralid moths are also known as snout moths, but their snouts are feeble affairs.

Hypena proboscidalis – The Snout

In the Noctuidae proper, we have the one that started it all, the shark, Cucullia umbratica, so called because it is sleek, grey and from above has a pointed shark like nose and a dorsal fin.

Cucullia umbratica – the shark.  yes, it is quite shark-like, but also a bit like a bit of bark. Perhaps it should be called the wood chip 🙂

 

Also within the Noctuidae we find the wainscots, so named because their pale grainy wings resemble wood panelling.

Mythimna pallens –  common wainscot and would definitely be able to hide in a wood panelled study

The three examples above definitely fit their common names.  The next two I feel have been somewhat misnamed.

Yet another Noctuid, this time Acronicta psi, the Grey Dagger.  According to Peter Marren, the markings on the wings look like daggers.  Personally I don’t see them, but I do see something that resembles pairs of of scissors 🙂

Daggers – the grey dagger wing markings suggest daggers, but look more like scissors to me

And finally, a Geometrid, a pug.  Supposedly the resting posture is reminiscent of the head of a pug dog with its drooping jaws.

Pug anyone? I don’t see it myself – someone must have had an overactive imagination!

 

If you want to know about the brocades, shoulderknots, carpets, quakers, prominents, rustics, eggars, thorns, sallows, and all the others, you’re going to have have to buy his book

Reference

Waring, P. & Townsend, M. (2003) Field Guide to the Moths of Great Britain and Ireland. British Wildlife Publishing, Dorset, UK.

Acknowledgements

Thanks to the Butterfly Conservation Trust for allowing me to use the moth photographs.

*it always amuses me how many of them are vertebrate ecologists 🙂

6 Comments

Filed under Book Reviews, EntoNotes

Pick & Mix 48 – wildflowers, sinistral snails, slaves, Charles Dickens, medieval insect lore, conservation and teaching in a virtual world

Rob Yorke on insects

On the importance of ‘real’ wildflowers and the rise of plant blindness

Do you remember Jeremy the left-handed snail?  Sadly, he is now no longer with us but he has been immortalised in print 🙂 See the published paper here.

Sickening and sobering visualisation of the slave trade 😦

Interesting analysis of some of Charles Dickens’ characters

Insects and other arthropods in medieval manuscripts – some remarkable illustrations

The role of arthropods in medieval medicine

One, two, more or less? How many metres apart will keep us safe?

Teaching tips for a virtual world

If you are interested in UK nature and conservation, then this is an interesting on-line news round-up

2 Comments

Filed under Pick and mix

Natural History learning should be compulsory for all, not just an option for a niche few

One of the few benefits of the Covid-19 pandemic is that I have been able to spend a lot more time outdoors roaming the country lanes around my lockdown prison*.  Prior to my move to Harper Adams University, I had, from 1992-2012, spent two days a week doing fieldwork at Silwood Park. When I moved  from there to Harper Adams, I resisted the temptation to set up yet another long-term field study, and decided to concentrate (not very successfully) on analysing my data backlog and getting the MSc courses well and truly established at their new location. At the time I hadn’t realised how much I had benefited, physically and mentally, from my Silwood transects until I started my lunchtime lockdown treks. I have over the past eleven weeks, added four new aphid species to my personal list, plus a couple of beetles (including one notable species), counted butterflies, seen a hare, reacquainted myself with lots of grasses and herbaceous plants, talked to trees, fumbled a few fungal identifications, and even taken a passing interest in birds :-).  I mention all this because I am a great believer in fieldwork and the benefits that accrue in terms of ideas if you keep your eyes open to all the other things that are happening around your study organisms. Given the vast number of insect species and the close relationships most of them have with plants, it behoves a field entomologist to have more than a passing interest in natural history.

This past week has seen a flurry of interest in the study of natural history in the UK. One of the national exam boards (OCR), after a lot of lobbying from the author Mary Colwell and organisations such as the UK Plant Science Federation, has set out a consultation document about the launch of a new GCSE** qualification in Natural History. As someone who has been bemoaning the lack of natural history training at all levels for many years, this, on the face of it, seems a great idea.

Learning the basics

This is their proposed statement on the purpose of studying Natural History: (so lack of appropriate punctuation is not due to me)

“Natural history offers a unique opportunity to observe and engage with the natural world to develop a deeper understanding of the flora and fauna (life on Earth) within it. It is a study of how the natural world has been shaped and has evolved as well as how humans (as part of that natural world) influence, conserve and protect it. It is vital that we continue to develop our understanding of the natural world in order to safeguard the future.

To fully appreciate the complexities of the natural world it is important to study it closely and interact with it through field research and measurement. Natural history provides opportunities to develop skills out in the field as well as in a classroom and/or laboratory. Studying natural history makes an important contribution to understanding the relationship between the natural world and culture, policy decisions, scientific research and technology.

Study of science, geography, history and the arts at key stages 3 and 4 provides a variety of complementary skills and knowledge which support the study of Natural history. This subject supports the development of unique skills and knowledge which give a sharper focus and depth to the complexities of the natural world. The progression pathway for this subject at key stage 5 and beyond could be scientific, geographical, environmental, ecological or natural history itself.”

 

This is all very laudable and something I think that all of us interested in natural history would support wholeheartedly.  In the UK, the problem is particularly acute and is something that has been recognised for some time (Leather & Quicke, 2010).  Natural history training at all levels has been appalling over the last couple of decades, and has been aided and abetted by the way in which research councils have awarded funding over that period (Clark & May, 2002; Leather, 2009, 2013).  This, and the typical media coverage, see us living in a world where ecology and conservation, is largely perceived to be vertebrate biased, and insects, with the exception of honeybees, portrayed as the enemies of humankind.

Typical reporting of the biodiversity crisis in the UK

Vertebrate bias not just confined to the UK

A very natural (and to me fascinating) phenomenon provoking hysterical reactions on Twitter. Most of the replies were similar to these “Just RUN,  RUN, Ew, Look for a spaceship – it’s an alien, we’re doomed, we’re all doomed”

Yet another harmless insect vilified

This is a problem and something one would hope that a pre-university qualification in natural history would seek to address.  Now, although I very much like and support the idea of a secondary school qualification in Natural History, I can see a couple of problems looming ahead.  First,  I may be biased, but looking at how the macro-species are represented globally, one would justifiably expect the study of natural history to focus on plants, insects and other invertebrates.

Estimated number of species globally within the macro-world (invertebrates other than insects number approximately 300 000 species).

Where are the invertebrates? Surely rather than the rise of the mammals, it should be mammals gain a precarious claw hold?  The invertebrates were, and continue to be the dominant animal life from on Earth, but don’t get a mention.  Then in another part of the consultation document, under topics to be considered, we see yet another anti plant and insect bias creeping in and a pro-vertebrate slant.

  • Effects of introducing non-native species (e.g. harlequin ladybirds, Rhododendron)
  • Species reintroduction (e.g. wolves, beavers, red kites)

There are lots of vertebrate non-native species that could be named (Eatherley, 2019) and many notable insect reintroductions (e.g. Andersen, 2016)..but where are they?

Despite the fact that the much respected book series The New Naturalist,and the equally respected journal, The American Naturalist, proudly include the word naturalist in their titles, sometime in the last thirty years or so, natural history and naturalist became words that were regarded with some scorn and suspicion within the hallowed halls of academia. Whereas in the past, to be an ecologist necessitated an understanding and knowledge of the living world (Travis, 2020), the ability to produce mathematical models and run complex statistical analyses became the route to tenure and laboratories chock a block with postdocs and PhD students.  In universities, computers and molecular biology labs replaced plant and animal based practical classes. Ecology field courses based around insect, and plant identification disappeared, to reappear rebadged as conservation courses and moved to exotic climes with a focus on the large and easily seen furry, feathered and scaled vertebrates. (OK, I’m being a bit hyperbolic here but you know what I mean; and this is a true story, when I was at Imperial College and it was very obvious that we were running out of entomologists to teach the subject, my Head of Department on me drawing this to his attention, suggested that we could do more modelling).  At the same time, biology teaching in secondary schools was also changing in scope, moving away from the outdoors and whole organisms, to molecules, genetics and humans.  The age of plant blindness, entomyopia, entoalexia and nature deficit disorder (Louw, 2005) was well and truly established by the beginning of the 21st Century.

This brings me to my biggest concern.  Insects and plants dominate the natural world, but, as we know, entomologists and botanists are in very short supply. In the UK, Botany and Zoology departments have mostly been subsumed into BioScience and Life Sciences departments to the detriment of whole organism teaching. There are no Botany Departments per se, and in the few remaining Zoology Departments, entomologists, make up at the most, half of the tenured staff, so where are the teachers going to come from?

Who will teach Natural History?

 

Finally, even if we find the teachers and the curriculum is appropriately balanced to reflect the natural world, unless we make it compulsory to all, as is the case with English and Mathematics, it will only ever remain a niche subject taken by relatively few students.  Consequently, elephant hawk moth caterpillars will continue to be beaten to death by suburban parents afraid of snakes, the press will continue to vilify harmless wood wasps, bumbling beautiful cockchafers will be swatted to death and hoverflies squashed by rolled up newspapers for no good reason.

 

References

Andersen, A. , Simcox, D.J., Thomas, J.A. & Nash, D.R. (2016) Assessing reintroduction schemes by comparing genetic diversity of reintroduced and source populations: A case study of the globally threatened large blue butterfly (Maculinea arion). Biological Conservation, 175, 34-41.

Clark, J.A. & May, R.M. (2002) Taxonomic bias in conservation research. Science, 297, 191-192.

Eatherley, D. (2019) Invasive Aliens, William Collins, London.

Leather, S.R. (2009) Taxonomic chauvinism threatens the future of entomology. Biologist, 56, 10-13.

Leather, S.R. (2013) Institutional vertebratism hampers insect conservation generally; not just saproxylic beetle conservation. Animal Conservation, 16, 379-380.

Leather, S.R. & Quicke, D.L.J. (2010) Do shifting baselines in natural history knowledge threaten the environment? Environmentalist, 30, 1-2.

Louw, R. (2005)  Last Child in the Woods, Atlantic Books, London.

Purvis, A. (2020) A single apex target for biodiversity would be bad news for both nature and people. Nature Ecology & Evolution, 4, 768-769.

Travis, J. (2020) Where is natural history in ecological, evolutionary and behavioral science?  The American Naturalist, 196,

 

*my wife and I managed to end up being lock-downed 250 km apart 😦

**Non UK residents see here for an explanation

2 Comments

Filed under Teaching matters

Not all aphids live on the underside of leaves

If I were to misquote Jane Austen and state “It is a truth universally acknowledged, that aphids are found on the underside of leaves” most people who know what aphids are would agree without quibbling. If natural enemies could speak, they would probably agree as this quote from an early paper by my former boss, Hugh Evans puts it  “since most aphids are found on the lower surfaces of leaves anthocorids must be wasting time in searching the upper leaf surface” (Evans, 1976). The only enemies that regularly search the upper surface of leaves are parasitoids, which use aphid honeydew as a host-findng cue (e.g. Volkl, 1994), which is where it falls if the leaves above them are infested with aphids.  We know that not all aphids feed on leaves, many using roots, flowers, stems and even tree trunks as their preferred feeding sites, but do all leaf-feeding aphids behave in the same way?

A few species of leaf-dwelling aphid buck the trend and live on the upper surface of leaves. Dogma has it that most leaf-feeding aphids prefer the underside because there are more stomata there and this makes access to the phloem easier.

Aphis grossulariae on the underside of a gooseberry leaf, – only revealed because I turned the leaf over.

Look, however, at a neat experiment that Graham Hopkins and Tony Dixon did (Hopkins & Dixon, 2000). They showed that the birch aphid Euceraphis betulae, which is normally found on the lower surface of leaves, will, if the leaves are held so that the upper surface faces the ground, move from the now facing upward lower surface to the now facing downward upper surface. The answer can’t all be to do with the stomata. That said, in grasses and other monocotyledonous plants, there are more stomata on the upper surface of the leaves andmMany grass-feeding aphids do seem to have a predilection for the upper surface. The green spruce aphid, Elatobium abietinum, another aphid that has a very strong preference for feeding through stomata, is found mainly on the upper surface of spruce needles which are where the stomata are more prevalent (Parry, 1971).

Utamophoraphora humboltdi feeding on the upper surface of Poa annua outside my office.

The Green Spruce Aphid, Elatobium abietinum feeding on the upper surface of spruce needles (Albrecht (2017)

It is possible, however, that the preference for the upper surface of grasses is not entirely due to the relative abundance of stomata there.  The grass aphid, Sipha kurdjumovi for example, although most commonly found feeding on the upper surface of grass and cereal leaves, prefers to settle on a concave ridged surface (Dixon & Shearer, 1974), a characteristic of the upper surface of many grasses  Lewton-Brain, 1904). Another advantage to living on the upper surface of grass leaves is that when grasses want to conserve water they roll inwards along the mid-vein, which has the added benefit of hiding the aphids and protecting them from their natural enemies.

Mainly, however, if you are an aphid, you feed where the stomata are plentiful, hence the tendency for aphids living on monocotyledonous plants to feed mainly on the upper surface of leaves, instead of the lower surface.  Conversely, a leaf-feeding aphid on a dicotyledonous host plant would be expected to feed on the lower surface of the leaves, where there are more stomata.  It also makes sense for those aphids to be underneath the leaf, as there is less chance of them being knocked off by the rain or being dislodged by leaves brushing against each other in the wind.

There are, however, two tree-dwelling aphids in the UK that live on the upper side of the leaves of their woody hosts, the very rare Monaphis antennata on birch (Hopkins & Dixon, 1997) and the less rare large walnut aphid, Panaphis juglandis on walnut (Heie, 1982). So what makes these aphids so contrary? According to Graham Hopkins and Tony Dixon (Hopkins & Dixon, 1997), M. antennata is taking advantage of enemy-free space and to compensate for living on top of the leaf is cryptic to avoid detection by enterprising predators, and has a flattened and contoured body shape to avoid accidental dislodgement.

When it comes to P. juglandis things are bit more conjectural.  Interestingly, despite being a pest in some parts of the world (e.g. Wani & Ahmad, 2014) we don’t know much about it. It is also hard to understand why it has adopted the upper side of the leaf as its habitat.  One very obvious downside

Panaphis juglandis – prominently lined up along the mid-vein of the upper surface of a walnut leaf and displaying their possible unpalatability by their conspicuous yellow and black colouration.  From Influential Points  https://influentialpoints.com/Images/Panaphis_juglandis_nymphs_on-vein_c2013-07-06_18-35-17ew.jpg

is that by so doing it has opened Itself up to competition from the other common walnut aphid, Chromaphis juglandicola, the honeydew of which falls from the leaves like acid rain on to P. juglandis and prevents them living on the same trees (Olson, 1974; Wani & Ahmad, 2014).  In the absence of C. juglandicola it is, however, very successful with a number of life history traits that presumably ensure its survival, although no one has quantified this. First, it is striped yellow and black, a clear warning sign.  Bob Dransfield and Bob Brightwell who run that fantastic site, Influential Points, suggest that perhaps P. juglandis sequesters juglone from its walnut host as a defence against predators. It therefore makes sense to advertise it by being conspicuously coloured.  Second, they also, point out that the way in which the nymphs line up along the mid-vein might act as a form of masquerade mimicry or disruptive camouflage, by looking from certain angles like a blemish caused  by a fungal disease or injury. Neither of these suggestions answer the question as to why it lives on the upper side of leaves. For M. antennata, escape from natural enemies and competition are cited as the reason why it lives where it does.  Neither seem to explain P. juglandis, as it is not, at least according to Olson (1974), safe from predation and parasitism, although there is some indication that it might be ant-attended (Fremlin, 2016), nor is it able to share its host plant with the other walnut specialist, Chromaphis juglandicola. On the other hand, unlike M. antennata, it is most definitely not a rarity.

As they used to say when I was young, “answers on a postcard please”. In the meantime, until someone has the time and inclination to delve into this intriguing conundrum, I guess we should add it to Ole Heie’s list of unsolved aphid mysteries 🙂

 

References

Albrecht, A. (2017) Illustrated identification guide to the Nordic aphids feeding on conifers (Pinophyta) (Insecta, Hemiptera, Sternorhyncha, Aphidomorpha). European Journal of Taxonomy, 338, 1-160.

Dixon, A.F.G. & Shearer, J.W. (1974) Factors determining the distribution of the aphid, Sipha kurdjumovi on grasses. Entomologia experimentalis et applicata, 17, 439-444.

Evans, H.F. (1976) The searching behaviour of Anthocoris confusus (Reuter) in relation to prey density and plant surface topography. Ecological Entomology, 1, 163-169.

Fremlin, M. (2016) The large walnut aphid (Panaphis juglandis Goeze) – A few observations. Nature in North-East Essex, 2016, 68-76.

Heie, O.E. (1982) Fauna Entomologia Scandinavia, Vol. 11. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. II. The family Drepanosiphidae. Scandinavian Science Press, Klampenbourg, Denmark.

Heie, O.E. (2009) Aphid mysteries not yet solved/Hemiptera:Aphidomorpha./. Monograph Aphids and Other Hemipterous Insects, 15, 31-48.

Hopkins, G.W. & Dixon, A.F.G. (1997) Enemy-free space and the feeding niche of an aphid. Ecological Entomology, 22, 271-274.

Hopkins, G.W. & Dixon, A.F.G. (2000) Feeding site location in birch aphids (Sternorrhyncha: Aphididae): the simplicity and reliability of cues. European Journal of Entomology, 97, 279-280.

Lewton-Brain, L. (1904). VII. On the anatomy of the leaves of British grasses. Transactions of the Linnaean Society of London, Botany, Series 2, 6, 312-359.

Olson, W.H. (1974) Dusky-veined walnut aphid studies. California Agriculture, 28, 18-19.

Parry, W.H. (1971) Differences in the probing behaviour of Elatobium abietinum feeding on Sitka and Norway spruces. Annals of Applied Biology, 69, 177-185.

Volkl, W. (1994) Searching at different spatial scales: the foraging behaviour of the aphid parasitoid Aphidius rosae in rose bushes. Oecologia, 100, 177-183.

Wani, S.A. & Ahmad, S.T. (2014). Competition and niche-partitioning in two species of walnut aphids. International Journal of Scientific Research and Reviews 3, 120 – 125.

Willmer, C. & Fricker W (1996)  Stomata, Springer, Berlin.

4 Comments

Filed under Aphidology, Aphids

Pick & Mix 47 – Captain Cook, coffee, tea, moths and bees

Follow Captain Cook on his Pacific voyages – nice interactive experience

Buried under colonial concrete – the lost botany of Botany Bay

Coffee, not just a pick you up, but a knock you down (if you’re an insect that is)

Did you know that there is an international tea day? All about tea for those of you who prefer tea to coffee

Beautifully written and equally beautifully illustrated essay by the aptly named Linden Hawthorne  (@Haggewoods onTwitter) on the Latin names of plants and animals

Gwen Pearson gives good advice on how to talk to a reporter about entomology

Moths – the mostly unseen and definitely unappreciated pollinators

Some cool bee videos from Jeff Ollerton

The bees are the stars – a novel about bees

For the non-entomologists (and entomologists) -urban fantasy novels: why they matter and which ones to read first – some good suggestions here

Leave a comment

Filed under Pick and mix

On rarity, apparency and the indisputable fact that most aphids are not pests

I am willing to bet that when most entomologists are out for a walk spend most of their time looking at the ground or the vegetation between the ground and head height. Lepidopterists and odonatologists may be the exceptions that prove the rule, but most of us spend a lot of time looking for things lurking in dung, hiding under stones or bark, scurrying around in the undergrowth or making holes in leaves 🙂

Tell-tale signs for an entomologist that something is or has been enjoying a meal

I’m an entomologist, I’m trained to look out for signs of insect infestations; curled leaves as in the above picture tell me that almost certainly an aphid and her offspring have been at work, sticky leaves alert me to the fact that there are aphids above me in the canopy of a tree. Leaves with holes tell me that a beetle or caterpillar has been at work. Leaves spun together with a silk web tell me a similar story. Plants with their stems and leaves stripped right back inform me that sawfly, lepidoptera and beetle larvae have been at work. A fancy spiral of brown or white on a leaf tells me that a leafminer has been, or is at work. In some cases the insect may not be there when I see the damage, the curled leaves caused by an aphid or psyllid infestation remain there until leaf fall, the chances of finding a caterpillar feeding on the very obviously shot-holed leaves of a plant are slim.  Like all sensible herbivores, the culprit will be in hiding closer to the stem, only sporadically popping out to feed.  On the other hand it may have fallen victim to a visually acute predator (bird) that was attracted to the leaf by the tell-tale feeding signs, or been eaten by a predatory insect or  have been parasitized by an ichneumonid wasp.  Plants are a lot less passive than people think. By producing the equivalent of an immune response they cause the insects to move to different feeding sites to make more holes effectively advertising their presence to potential predators.  Simultaneously, the plant sends out chemical signals telling insect predators and parasites that there is a meal or host available.  An herbivore’s lot is not an easy one.

The Covid-19 crisis means that I have been working from home in a hamlet on the Staffordshire/Shropshire border.  To keep myself reasonably sane and moderately physically healthy I have been treating myself to a lunchtime walk along the bridleways, footpaths and public roads within a 5 km radius of my house. As a result I have become much more familiar with the area. One of the things that has been very obvious, apparent even, is that some plants dominate the roadside verges, cow parsley Anthricus sylvestris being one that really stands

Cow parsley – very common and abundant, occurring in huge swathes around Forton and Sutton and in this case and in many other sites along my walks, backed by the equally apparent hawthorn (Crataegusus monogyna) hedge.

out from the crowd at this time of the year. Not only is it very apparent, but it provides a great source of nectar for the spring butterflies such as the Orange Tip and the assorted bumblebees, solitary bees and hoverflies, that despite the anthropogenic pressures put upon them, still manage to make an appearance.  Nettles, as I particularly noticed when having to social distance myself from the sweaty joggers and cyclists taking advantage of the virtually deserted country lanes, also play a prominent role in the roadside plant community. Also very common, but showing a much patchier distribution and occurring in clumps, including in my garden, is the ribwort plantain, Plantago lanceolata, which is yet another so called weed*, that is perfect for pollinators.

Ribwort plantain – common but patchy and clumped – this clump in my garden where it is safe from forks and herbicides.

Although both the cow parsley and plantain were buzzing with pollinators, they were, and still are at time of writing, singularly devoid of herbivores, including my favourite aphids. Conversely, the odd scattered bird cherries (Prunus  padus) and the solitary self-seeded wild cherry (Prunus avium) in my garden are proudly sporting the characteristic leaf rolls caused by the bird cherry aphid, Rhopaloisphum padi and the cherry black fly, Myzus cerasi respectively.

Note that both these trees were not growing near any of their relatives and were surrounded and overtopped by other plant species, so as far as humans are concerned not very apparent.

This got me to wondering why it was, that, the to me, and presumably other humans, the very obvious cow parsley and plantains, were not covered in plant feeding insects, while the less apparent cherries were heavily infested by their respective aphids.  After all, according to Richard Root, large swathes of monocultures are likely to be easily found and colonised by pests. Plant apparency was first defined by the British born, American based ecologist Paul Feeny in the mid-1970s.

“The susceptibility of an individual plant to discovery by its enemies may be influenced not only by its size, growth form and persistence, but also by the relative abundance of its species within the overall community. To denote the interaction of abundance, persistence and other plant characteristics which influence likelihood of discovery, I now prefer to describe “bound to be found” plants by the more convenient term “apparent”, meaning “visible, plainly seen, conspicuous, palpable, obvious” (Shorter Oxford English Dictionary, 3rd, edition; Webster’s Concise English Dictionary). Plants which are “hard to find” by their enemies will be referred to as “unapparent”, the antonym of apparent (O.E.D. and Webster, loco cit.). The vulnerability of an individual plant to discovery by its enemies may then be referred to as its “apparency”, meaning “the quality of being apparent; visibility” (O.E.D. and Webster, loco cit.). Since animals, fungi and pathogens may use means other than vision to locate their host-plants, I shall consider apparency to mean “susceptibility to discovery” by whatever means enemies may employ” Feeny (1976).

So, even though cow parsley is highly visible and apparent to us humans, and their pollinators, because it is an annual and thus ephemeral within the landscape, it is not necessarily apparent to the herbivores that want to feed on it. Conversely, trees, such as bird cherry, although not necessarily apparent to us, are apparent to insect herbivores because they are large and long-lived. How does this affect the way in which plants avoid being found and eaten by insect herbivores?

Peter Price, another British born American based ecologist very neatly summarised Paul’s hypothesis as follows

Long-lived trees which are bound to be found by herbivores, invest heavily in costly chemical defence with broad-spectrum efficacy.   These quantitative defences are expensive but the cost is tolerable for a long-lived plant.  Short-lived plants are less easily detected by herbivores, and their best defence is being hard to find in patchy and ephemeral sites.  Low cost defences are effective against generalist herbviores should plants be found.  Instead of tannins and other digestibility reducers found as defences in long-lived plants, short-lived plants have evolved with mustard oils (glucosinolates) in crucifers, for example, alkaloids in the potato family, furanocoumarins in the carrot family (Price, 2003).

All I can say is that the quantitative defences of the trees don’t seem to be doing as good a job as the less expensive ones of the cow parsley, plantains and nettles.  As an aside, it turns out that although both cow parsley and plantain have a lot of medicinal uses, their chemistry does include some insecticides (Adler et al., 1995; Milovanovic et al., 1996). Cheap and cheerful seems to be the answer for an herbivore-free life in this case 🙂 Earlier I referred to cow parsley and plantains as being common.  What does that mean? According to Wikipedia (where else would I go?),

 “Common species and uncommon species are designations used in ecology to describe the population status of a species. Commonness is closely related to abundance. Abundance refers to the frequency with which a species is found in controlled samples; in contrast, species are defined as common or uncommon based on their overall presence in the environment. A species may be locally abundant without being common.

However, “common” and “uncommon” are also sometimes used to describe levels of abundance, with a common species being less abundant than an abundant species, while an uncommon species is more abundant than a rare species.”

In the UK we have a conservation designation, Sites of Special Scientific Interest, the criteria for selection which can be found here. To save you the trouble of reading the whole document, the way in which rarity and scarcity are defined is as follows.

Nationally Rare (15 or fewer UK hectad (10 km squares) records)

Nationally Scarce – Notable A (31-100 UK hectad records),

Nationally Scarce – Notable B (16-30 hectad records.

Local – (101-300 UK hectad records)

Okay, so what has all this to do with aphids and their pest status? As you all probably know by now I love aphids; as far as I am concerned, where insects are concerned, they are the bee’s knees**.

Unfortunately, aphids get a terrible press, most of it, in my opinion, undeserved.

Just a couple of examples of aphids getting a biblically bad press.

A few years ago, I wrote a short piece about the fact that only a minority of the so far 5600 or so aphids described, are pests, and many are very rare. The cover of this issue of New Scientist from 1977, which appeared a few months after I joined the group, very nicely sums up the question that we really ought to be asking. Here I have to confess that the article from our lab (McLean et al., 1977), made the case for aphids being pests, and it was the late Denis Owen who defended aphids (Owen, 1977).

Tony Dixon’s cereal aphid research group (of which I was proud to be a member) got more than just a mention in this issue.

Two plants that I have a particular interest in are sycamore and bird cherry, mainly because of their aphids, but in the case of the bird cherry, I love its flowers.  Now, although both have very similar distributions and occurrences to cow parsley and ribwort plantain, ubiquitous, they are much easier

Distribution of cow parsley, ribwort plantain, and sycamore and bird cherry in the British Isles (Atlas of the British Flora)

to find aphids on than both cow parsley and plantain.  On my daily walks during which I pass countless cow parsley and plantain plants, I have, so far, only found one cow parsley with aphids on and not a single plantain has shown any signs of aphid infestation . I have also, only found one nettle plant with Microlophium carnosum on it.  Cow parsley has a number of aphid species that use it as a secondary host migrating there from willows or hawthorns. Plantains also serve as host plants to aphids, some such as Dysaphis plantaginea host alternate, others such as Aphis plantaginis, do not. The latter species, if present, is almost always ant attended (Novgorodova & Gavrilyuk, 2012), which, if you know what you are looking for, makes it easy to spot.  I know what to look for and so far, have not found any! Nettles are also very common in the roadside verges, and they too have aphids that love them, Microlophium carnosum and Aphis urticata, the former a favourite prey of ants, the latter, farmed by the ants.  So far this year I have only found one small colony of M. carnosum, and believe me, I have been looking.

So what about the trees? Sycamores are a common sight on my walks, occurring both as hedges and as solitary trees or sometime in small groups. Almost all the large trees have sycamore aphids, Drepanosiphum platanoidis feeding on their leaves, and many have dense colonies of the maple aphid, Periphyllus testudinaceus, some with ants in attendance. Bird cherry is not as common on my walks and where I have found it, they have been small trees or shrubs usually on their own, and surrounded by other woody plants. Without exception, all have been conspicuously infested by the bird-cherry oat aphid.  To summarise, we have common plants that support aphids that are not regarded as rare, but find startlingly different levels of abundance of them here in Staffordshire, and in my experience, elsewhere.  At the same time that I have been actively searching for aphids, six species of butterfly that the Woodland Trust lists as common, have been hard to miss.  In order of sightings these are the Orange Tip, the Peacock, the Small Tortoiseshell, the Speckled Wood, the Holly Blue and the Brimstone, two of which, the Peacock and the Small Tortoiseshell, being nettle feeders as larvae. Despite the abundance of nettles in the hedgerows, So far I have only seen one small colony of Small Tortoiseshell larvae on the of nettles. I am, at this juncture, unable to resist mentioning that adults of the Holly Blue feed on aphid honeydew J Going back to my original point, the fact that I have seen more butterflies than aphids doesn’t necessarily mean that the aphids are less abundant, just less apparent.

There are at least 614 species of aphid in the UK (Bell et al., 2015). I am not sure how many I have seen, I stopped keeping a personal tick list many years ago, but I would guess that I have seen about half of them.  I like aphids, I look for aphids, but there are many ‘common’ species that I have never seen. I have, however, seen some of the rare ones. Four that stand out in my memory are Monaphis antnenata, Stomapahis graffii, Myzocallis myricae and Maculolachnus submacula. The first feeds on the upper surface of birch leaves (Hopkins & Dixon, 1997) and was shown to me by the late Nigel Barlow, when he was on a sabbatical at Silwood Park. Stomaphis graffii which feeds under the bark of sycamores and maples and is ant attended, was shown to me by an MSc student, Andrew Johnson, also at Silwood Park.  Myzocallis myricae, the bog myrtle aphid, only found on bog myrtle (Myrica gale) (Hopkins et al., 2002), I saw in the Highlands of Scotland, when Tony Dixon asked me to stop the car so he could go and look at a clump of bog myrtle he had spotted as we drove along between field sites. The giant rose aphid, Maculolachnus submacula, I saw in my garden in Norwich (84 Earlham Road) when I was a PhD student at the University of East Anglia.  I only found it because I wondered why there was an ant nest reaching halfway up one of my roses.  When I looked, I found that they were farming the aphids that were feeding on the lower stems.

It is important to remember that most aphids are host-specific, some feeding only on a single plant species, others being confined to a single genus with only a minority having a wide host range*** and considered pests (Dixon, 1998). Given this, it is obvious that aphids with rare host plants are also going to be rare (Hopkins et al., 2002).  Many aphids are also very fussy about their niche, either feeding on a very particular part of a plant or having a very close association with a particular species of ant.  Looking at the aphids that the two Bobs (Influential Points it seems that aphids that are rare  are also ant-attended.  Given, that many ant-attended aphids aren’t rare it would seem an interesting area to pursue. Perhaps it is the degree of ant-attendance, i.e. facultative versus obligate that is the key factor?

If you look at the list of species of insects that are regarded as endangered and worthy of conservation in the UK, the overwhelming impression is that unless they are big and pretty they don’t get a look in.  Needless to say, despite their beauty and fascinating life styles, no aphids are included in the list L

We really should be conserving aphids, not squashing them. Many provide important nutrition for ants and other pollinators, honeydew.  They are an important source of food for insects and birds (Cowie & Hinsley, 1988).  Aphids also help plants grow by feeding mycorrhizae with their honeydew (Owen, 1980; Milcu et al., 2015). Finally, as aphids are so host specific using the presence of uncommon species in suction traps could help identify sites with rare plants.

Aphids, rare, useful and much maligned, time to rethink their role.

 

References

Adler, L.S., Schmitt, J. & Bowers, M.D. (1995) Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia, 101, 75-85.

Bell, J.R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., Shortall, C.R., Taylor, M.S., Verier, P. & Harrington, R. (2015) Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. Journal of Animal Ecology, 84, 21-34.

Cowie, R.J. & Hinsley, S.A. (1988) Feeding ecology of great tits (Parus major) and blue tits (Parus caeruleus), breeding in suburban gardens. Journal of Animal Ecology, 57, 611-626.

Dixon, A.F.G. (1998) Aphid Ecology. Chapman & Hall, London.

Feeny, P. (1976) Plant apparency and chemical defence. Recent Advances in Phytochemistry, 10, 1-40.

Hopkins, G.W. & Dixon, A.F.G. (1997) Enemy-free space and the feeding niche of an aphid. Ecological Entomology, 22, 271-274.

Hopkins, G.W., Thacker, J.I.T., Dixon, A.F.G., Waring, P. & Telfer, M.G. (2002) Identifying rarity in aphids: the importance of host plant range. Biological Conservation, 105, 293-307.

McLean, I., Carter, N. & Watt, A. (1977) Pests out of Control. New Scientist, 76, 74-75.

Milcu, A., Bonkowski, H., Collins, C.M. & Crawley, M.J. (2015) Aphid honeydew-induced changes in soil biota can cascade up to tree crown architecture. Pedobiologia, 58, 119-127.

Milovanovic, M., Stefanovic, M., Djermanovic, V., & Milovanovic, J. (1996). Some chemical constituents of Anthriscus sylvestris. Journal of Herbs, Spices & Medicinal Plants, 4, 17–22. Eugenol – insecticide

Novgorodova, T.A. & Gavrilyuk, A.V. (2012). The degree of protection different ants (Hymenoptera: Formicidae) provide aphids (Hemiptera: Aphididae) against aphidophages European Journal of Entomology, 109, 187-196.

Owen, D.F. (1977) Are aphids really plant pests? New Scientist, 76, 76-77.

Owen, D.F. (1980) How plants may benefit from the animals that eat them. Oikos, 35, 230-235.

Price, P.W. (2003) Macroecological Theory on Macroecological Patterns, Cambridge University Press, Cambridge.

Thacker, J.I., Hopkins, G.W. & Dixon, A.F.G. (2006) Aphids and scale insects on threatened trees: co-extinction is a minor threat. Oryx, 40, 233-236.

Uusitalo, M. (2004) European Bird Cherry (Pruns padus L). A Biodiverse Wild Plant for Horticulture. MTT Agrifood Research Finland, Jokioinen.

** https://en.wiktionary.org/wiki/the_bee%27s_knees    

***Hugh Loxdale however, would argue that all insects are specialists and that so called polyphagous species are, in reality, cryptic specialist species (Loxdale, H.D., Lushai, G. & Harvey, J.A. (2011) The evolutionary improbablity of ‘generalism’ in nature, with special reference to insects. Biological Journal of the Linnean Society, 103, 1-18.)

 

5 Comments

Filed under Aphidology, Aphids

An unintended consequence – Maris Huntsman: A great choice for entomological careers but not so good for farmers

I could have used Sod’s Law or Murphy’s Law as the lead in for this article, but as you will see (if you keep on reading), this story isn’t all doom and gloom 😊. During the 1960s, cereal growers in the UK and on mainland Europe, were subjected to onslaughts on two fronts, yellow rust* ((Puccinia striiformis) (Doling & Doodson, 1968) and cereal aphids (Fletcher & Bardner, 1969; Kolbe, 1969).  Although cereal aphids had been a sporadic problem in Europe for several decades previously (Kolbe, 1969,1973; Rautapää, 1976) and even earlier than that (e.g. Marsham, 1798), 1968 was an exceptional year for them (Fletcher & Bardner, 1969; Kolbe, 1969).  Presaging  Richard Root’s seminal work on crop apparency and pest occurrence, the Dutch agronomist Willem Feekes predicted that changes in agricultural practice, in particular cereal production, would lead to increased pest and disease problems (Feekes, 1967). This was further emphasised by Wilhelm Kolbe of Bayer, who suggested that the big increase in cereal production in Europe between 1950 and 1970 and the switch from oats to wheat was the cause of the cereal aphid problem (Kolbe, 1973).   Similarly, in the UK, where oats were 51% of the cereal crop in 1930, they had fallen to 11% by 1965 (Marks & Britton, 1989).

Cereal production UK

The shift in cereal crops may indeed have been a contributory factor, but I think, certainly in the UK, that we can add another factor to the equation. Over at Maris Lane**, where the Plant Breeding Institute was based at Trumpington, Cambridge, a new variety of wheat, Maris Huntsman, with good resistance to both powdery mildew and yellow rust (Ruckenbauer, 1975) had been developed and introduced as a recommended variety to farmers in 1972 (Hughes & Bodden, 1978).  By 1977 it accounted for almost 40% of the wheat sold in the UK (Hughes & Bodden, 1978), although a mere two years later, it had fallen to just over 20% (Johnson, 1992).  Based at Trumpington, entomologist Henry Lowe, had, since the late1960s been investigating the resistance of crop plants to aphids, first beans (e.g. Lowe, 1968) was at the time, investigating the resistance of varieties of wheat to aphids (Lowe, 1978, 1980). He found, as one might expect that not all cereal species and varieties were equally susceptible to aphids, and if given a free choice, the grain aphid Sitobion avenae, showed a preference for Maris Huntsman.

So what does this have to do with launching the careers of a couple of dozen entomologists? Well, back in the late 1960s Tony Dixon, then based in Glasgow, got interested in the bird cherry-oat aphid, Rhopalosiphum padi  (Dixon, 1971; Dixon & Glen, 1971), a minor pest of cereals in the UK, mainly because of its great ability to transmit Barley Yellow Dwarf Virus (Watson & Mulligan, 1960. In those countries, such as Finland and Sweden, where spring sown cereals are the norm, it is a pest in its own right, able to cause yield reduction without the help of a virus (Leather et al., 1989). Tony moved to the University of East Anglia as Professor of Ecology in 1975 and started his new career there by appointing six new PhD students. Three of these were looking at aspects of cereal aphid ecology, Allan Watt researching the biology of S. avenae and Metoplophium dirhodum, Ian McLean looking at the predators and Nick Carter modelling their populations in order to develop a forecasting system.  Research groups at Imperial College and at the University of Southampton also began to work on the problem.  Fortuitously although cereal aphid numbers had fallen since the  

Numbers of Sitobion avenae caught in the Brooms Barn suction trap (data from Watson & Carter, 1983)

populations picked up in 1974 and then rose to outbreak levels again in 1976, just as the new PhD students started their field work. I joined the group in 1977 to work on R. padi, followed in subsequent years by Keith Walters (now a colleague at Harper Adams University), John Chroston, Sarah Gardner, Nigel Thornback, Ali Fraser, Shirley Watson, Trevor Acreman, Dave Dent, and after I left for pastures new, Alvin Helden (now Head of School at Anglia Ruskin University). Similar numbers of students were appointed at Southampton, including Nick Sotherton, now Director of Research at the Game and Wildlife Conservation Trust.  There were also groups started at Imperial College and the University of Reading. There was a certain element of rivalry between the groups, Steve Wratten for example, was an ex-student of Tony’s and there was a certain degree of animosity between Roy Taylor (of Taylor’s Power Law fame) at Rothamsted and Tony Dixon, we had mini-conferences to exchange findings and generally got on well.  Allan Watt for example went to work for Steve Wratten as a post-doc before moving up to Scotland to work on the pine beauty moth alongside me.  It was a great time to be working on aphids and I think we all benefitted from the experience and I for one, am very grateful to the plant breeders for developing a  variety of wheat, that although resistant to rust and powdery mildew, is very attractive to the grain aphid 🙂

Having fun in a Norfolk cereal field; me, Allan Watt and Ian McLean (Nick Carter had the good sense to stand behind the camera).

You may be wondering why I penned this reminiscence. Well, last year, my colleague Tom Pope and I were discussing cereal aphids at coffee time (as you do), and I mentioned how Maris Huntsman had launched my career.  It just so happened that Tom had access to old, ancient and modern varieties of cereals to hand and a final year project student keen on aphids so it doesn’t take a genius to guess what happened next 🙂

Host preferences of Sitobion avenae (Dan Hawes & Tom Pope). Can you guess which is Maris Huntsman?

So, Maris Huntsman, a great choice for attracting aphids and producing entomologists 🙂 and of course a great big vote of thanks to the PBI

 

References

Dean, G.J.W. & Luuring, B.B. (1970) Distribution of aphids on cereal crops. Annals of Applied Biology, 66, 485-496.

Dixon, A.F.G. (1971) The life cycle and host preferences of the bird cherry-oat aphid, Rhopalosiphum padi (L) and its bearing on the theory of host alternation in aphids. Annals of Applied Biology, 68, 135-147.

Dixon, A.F.G. & Glen, D.M. (1971) Morph determination in the bird cherry-oat aphid, Rhopalosiphum padi (L). Annals of Applied Biology, 68, 11-21.

Doling, D.A. & Doodson, J.K. (1968) The effect of yellow rust on the yield of spring and winter wheat. Transactions of the British Mycological Society, 51, 427-434.

Feekes, W. (1967) Phytopathological consequences of changing agricultural methods. II Cereals. Netherlands Journal of Plant Pathology, 73 Supplement 1, 97-115.

Fletcher, K.E. & Bardner, R. (1969) Cereal aphids on wheat. Report of the Rothamsted Experimental Station 1968, 200-201.

Hughes, W. G., & Bodden, J. J. (1978). An assessment of the production and performance of F1 hybrid wheats based on Triticum timopheevi cytoplasm. Theoretical and Applied Genetics, 53, 219–228.

Janson, H.W. (1959) Aphids on cereals and grasses in 1957. Plant Pathology, 8, 29.

Johnson R. (1992) Past, present and future opportunities in breeding for disease resistance, with examples from wheat. [In] Johnson R., Jellis G.J. (eds) Breeding for Disease Resistance. Developments in Plant Pathology, vol 1. Springer, Dordrecht

Kolbe, W. (1969) Studies on the occurrence of different aphid species as the cause of cereal yield and quality. Pflanzenschutz Nachrichten Bayer, 22, 171-204.

Kolbe, W. (1973) Studies on the occurrence of cereal aphids and the effect of feedingdamage on yields in relation. Pflanzenschutz Nachrichten Bayer, 26, 396-410.

Latteur, G. (1971) Evolution des populations aphidiennes sur froments d’hiver.  Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 36, 928-939.

Leather, S.R., Walters, K.F.A., & Dixon, A.F.G. (1989) Factors determining the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: a study and review. Bulletin of Entomological Research, 79, 345-360.

Leather, S.R., Carter, N., Walters, K.F.A., Chroston, J.R., Thornback, N., Gardner, S.M., & Watson, S.J. (1984) Epidemiology of cereal aphids on winter wheat in Norfolk, 1979-1981. Journal of Applied Ecology, 21, 103-114.

Lowe, HJ.J.B. (1967) Interspecific differences in the biology of aphids (Homoptera: Aphididae) on leaves of Vicia faba I. Feeding behaviour. Entomologia experimentalis et applicata, 10, 347-357.

Lowe, H.J.B. (1974) Effects of Metopolophium dirhodum on Spring wheat in the glasshouse.  Plant Pathology, 23, 136-140.

Lowe, H.J.B. (1978) Detection of resistance to aphids in cereals.  Annals of Applied Biology, 88, 401-406.

Lowe, H.J.B. (1980) Resistance to aphids in immature wheat and barley. Annals of Applied Biology, 95, 129-135.

Macer, R.C.F. (1972) The resistance of cereals to yellow rust and its exploitation by plant breeding.  Proceedings of the Royal Society London B., 181, 281-301.

Marks, H.F. & Britton, D.K. (1989)  A Hundred  Years of British Food and Farming: A Statistical Survey. Taylor & Francis.

Marsham, T. (1798) Further observations on the wheat insect, in a letter to the Rev. Samuel Goodenough, L.L.D. F.R.S. Tr.L.S. Transactions of the Linnaean Society London, 4, 224-229.

Rautapää, J. (1976) Population dynamics of cereal aphids and method of predicting population trends. Annales Agriculturae Fenniae, 15, 272-293.

Rogerson, J.P. (1947) The oat-bird cherry aphis Rhopalosiphum padi (L.) and comparison with R. crataegellum Theo. Bulletin of Entomological Research, 38, 157-176.

Ruckenbauer, P.  (19 75) Photosynthetic and translocation pattern in contrasting winter wheat varieties. Annals of Applied Biology, 79, 351-359.

Watosn, M.A. & Mulligan, T. (1960) The manner of transmission of some Barley Yellow‐Dwarf Viruses by different aphid species. Annals of Applied Biology, 48, 711-720.

Watson, S.J. & Carter, N. (1983) Weather and modelling cereal aphid populations in Norfolk (UK). EPPO Bulletin, 13, 223-227.

Zayed, Y. & Loft, P. (2019) Agriculture: Historical Statistics. House of Commons Briefing paper 3339

 

*Yellow rust is still a  still a major problem for cereal growers worldwide

**an address that is immortalised in the names of several cultivars of crops developed by the PBI

 

1 Comment

Filed under EntoNotes, Uncategorized

Pick & Mix 46 – alternative beverages, dragons, nature conservation and insects galore

Violet leaf tea anyone?

Fancy a naturally occurring low caffeine version of coffee – then why not try this  flavoursome alternative?

A depressing story from a disillusioned nature conservationist or is it?

Are you good at silviculture asks Julian Evans former Professor of Forestry at Imperial College.  I was amused to see that the long-haired reprobate standing at the back of the picture of work going on at Kielder Forest was me 🙂

Where have all the insects gone? A long read – but very interesting

If you have a wood burning stove or use firewood, do make sure you aren’t putting something beautiful on the fire 🙂

Have you ever wondered about those iridescent insects?  Wonder no more

Excellent and fun guide to insect Orders from Ray Cannon

The World’s Most Interesting Insects – new book – some glorious pictures included in the review

Here be Dragons – I’ve linked this one because my late Mother came from Washington, County Durham and her party piece when I was a kid was a dialect version of The Lambton Worm. If you don’t know it, here it is by Bryan Ferry, who went to the same school as my Mum (albeit 15 years after her), but I think my Mum’s version was much better 🙂

3 Comments

Filed under Pick and mix

If I hadn’t become an entomologist, what would I have become? The scientific road not taken

A couple of days ago Jeremy Fox over at Dynamic Ecology posted a what if blog asking where, knowing what you now know, you might see yourself in an alternative world. To be clear, I have absolutely no regrets choosing entomology as a subject, and teaching and research as a career. I did, however, and still do, have some allied interests.

As I have mentioned before, I became interested in insects and their antics from a very early age, but I was also, from an equally early age a voracious reader, devouring books at a prodigious rate. I wasn’t fussy about genres, although I particularly enjoyed those with a historical flavour, Treasure Island, Ivanhoe,  Lorna Doone, Biggles, Hornblower, and the works  of  H.G. Wells, Rudyard Kipling, Conan Doyle, not just Sherlock Holmes, but also Sir Nigel and The White Company* to name but a few.  I was also interested in Roman history, in fact I still am, and love reading detective fiction set in those times especially Lindsey Davis’s Falco novels. I come from a long line of civil engineers and from them seem to have inherited an interest in digging holes and making dams, and this, coupled with my interest in history, did make me fleetingly consider archaeology as a possible career. But it wasn’t to be, and in later years this turned into human archaeology of a sort, genealogy :-).  This is probably one of the reasons why I find Edward Rutherford’s sweeping historical novels with their detailed family trees and thousand year time spans so fascinating.

As a teenager, before I was totally consumed by the flame of entomology, I fleetingly contemplated a possible career in medicine but at the same time really got into human origins and so palaeontology seemed a possible way to go. I was reminded of this a few years ago, when I was the external examiner for the Zoology degree at University College Dublin, but again it was not to be, and I ended up, without regrets, as an entomologist.

What I have discovered over the years is that I still love history, I love teaching and I love a good mystery.  I have always wanted to know how things came to be, and, as my students will testify, my lectures always have a bit of history in them, nuggets about the early entomologists and ecologists and how the sub-disciplines arose as well as personal stories of how papers and lecturers inspired me.  In some ways, this is a bit like archaeology as I quite often have to do a lot of digging and delving into the past, when, for example I am chasing down an elusive reference.

So, in answer to the question posed by Jeremy Fox, I would, if I hadn’t become an entomologist, love to have been an academic specialising in the history of science 🙂

*

 

5 Comments

Filed under The Bloggy Blog

Ideas for doing ecology during the lockdown

If you are a follower of my blog then you will know that I have a thing about roundabouts; if not then follow this link and read about the wonderful world of the famous Bracknell roundabouts 🙂 Seriously though, I, or more correctly, a bunch of my students with the occasional visit from me, spent twelve years sampling roundabouts for a variety of plant and animal life, ranging from bugs through to birds with beetles in between.

I originally set the project up as a pedagogical exercise to make island biogeography and nature reserve design more relevant to UK-based undergraduates. I have a bit of a thing about students swanning off to warm tropical places to do conservation, when we have plenty of our own nature that needs attention much closer to home.

Having come up with the idea of getting students (initially undergraduates, but soon involving a horde of MSc students and even a PhD student) to test the species-area relationship using roundabouts as islands – green oases surrounded by a sea of tarmac,  I had to do something about it, especially as the Borough Council, to my total amazement, agreed that I could do it 🙂

So the project was born and lived on for twelve very productive and enjoyable years. We used pitfall trapping, sweep netting, tree beating, suction sampling, transect sampling for the butterflies and bumblebees and also bird counts.  We sampled the vegetation, measured NOx and recorded how often the grass was mown.  We also measured how far away the nearest green spaces were and the immediate and not so immediate land-use.

To my initial surprise (although perhaps I shouldn’t have been), it turned out that the roundabouts were full of wildlife and behaved like geographical islands, big ones having more species than smaller ones (species-area) and more individuals of those species (area-abundance theory).  We also showed that native plants supported more insects than non-native plants and that this was good for the birds.

Quite a bit of the work is now published although we still have a pile of plant and woodlouse data to write up.

So, how does this relate to our current lockdown status?  You can’t very well go out and sample roundabouts or roadside verges, the police will move you along pretty quickly.  Most of you however, probably have a garden and know people with gardens.  Why not get together (virtually of course) and decide what you want to sample; pitfall traps are probably the easiest thing to start with or you could do a bit of bush and tree beating.  Measure your respective islands (gardens) and start collecting and counting. Then collate your data and see what you turn up. Kevin Gaston and Ken Thompson both formerly at Sheffield University found all sorts of exciting things in Sheffield domestic gardens and if you want a good read about the wildlife of suburban gardens I can recommend Jennifer Owens’ little book https://www.amazon.co.uk/Ecology-Garden-First-Fifteen-Years/dp/0521018412

So, find a trowel and get those plastic/paper party cups, jam jars, or tin cans deployed, or get a broom handle and bed sheet and start being cruel to the trees and bushes and enjoy a bit of outdoor time 🙂

 

 

 

Leave a comment

Filed under Roundabouts and more