Monthly Archives: February 2018

My group is bigger, better and more beautiful than yours – The annual MSc Entomology trip to the Natural History Museum, London, 2018

This week we went on one of my favourite trips with the MSc Entomology students.  We visited the Natural History Museum in London.  We got off to fantastic start – all the students, and staff, arrived at the arranged time of 0645, something that had never happened before :-). The weather was fine, although at that time in the morning it was too dark to really appreciate it, and off we set.  I should have known that something would go wrong and sure enough the traffic was awful, and we had to make an unscheduled stop at a motorway service station to make sure our driver didn’t exceed his quota of working hours.

The now much delayed coach basking in the sunshine at a motorway service station.

Some of the MSc students; remaining cheerful despite the delay.

Forty-five minutes later we set off again and despite encountering a few further delays arrived safely, albeit almost an hour and a half late.  Luckily our host for the day Erica McAlister (@flygirlNHM) was ready and waiting and very efficiently got our visit back on track.  This year we were shown Colossal Coleoptera by Michael Geiser, Huge Hymenoptera by Nathalie Dale-Skey, Lustrous Lepidoptera by Alessandro Giusi and Deadly Diptera by Erica McAlister.   All our specialist hosts were, as you would expect, very keen to extol the virtues of their groups, and who can blame them.  I do the same with Awesome aphids 🙂 We are always very appreciative of the time and care that the NHM entomologists give us, especially as they have, sadly, recently had their numbers reduced.  Hopefully, as the realities of the problems associated with insect conservation and identification become even more apparent than they already are, we will see the appointment of more entomologists to this very much-needed global resource.  Here are some pictures to give you a flavour of the day.

Mouse mat for forensic entomologists 🙂

Alessandro Giusti waxing lyrical about the biggest, the smallest and the most beautiful Lepidoptera (moths as far as he is concerned).

 

The large and the small (a really bad photo by yours truly, I am still getting to grips with my new camera)

Natalie Dale-Skey extolling the virtues of Hymenoptera

They don’t have to be big and tropical to be beautiful – these are tiny but gorgeous

I do like a good wasp nest 🙂

Erica McAlister on the sex life of flies

The biggest flies in the world pretending to be wasps

A selection of flies

I was very impressed that the Crane fly still has all its legs attached.  I collected Crane flies for my undergraduate collection and had to resort to sticking their legs on to a piece of card.

Not quite the rarest fly in the World but as its larvae live inside rhinoceroses it could be in trouble 😦

Big beautiful beetles

Cockchafers aren’t really this big, but wouldn’t it be awesome if they were?

MSc Entomology (@Entomasters) at the end of the visit.  Photo courtesy of Heather Campbell (@ScienceHeather), our newest member of staff

Once again, a huge vote of thanks to Erica and colleagues for making this a memorable visit.  We had a fantastic day.

3 Comments

Filed under EntoNotes, Teaching matters

Pick and mix 16 – more links to check out

Wise words from the Oxford University Museum of Natural History

If you live in the UK and like trees in your garden, here are some suggestions of native species to plant – all are good for insects and birds

On managing your urban garden as a productive ecosystem

An excellent resource of historical research done at Rothamsted Research Station – this section all about bees

Still more on bees, this time how bees that are feeling unwell change their diets to fight of infection

More and more species being discovered yet taxonomists are an endangered species themselves; they deserve our respect and more funding

They may be unwanted neighbours but these are beautiful pictures from Gil Wizen

Maria Sibylla Merian, a prodigy from the 17th Century; artist, naturalist and entomologist – remarkable achievements

Many animals, including insects, can count

If you have ever wondered why entomologist kill insects and have 28 minutes to spare listen to this

An irreverent obituary of legendary French chef Paul Bocuse

1 Comment

Filed under Pick and mix

Entomological classics – The D-Vac, Vortis and other motorised suction samplers

I think that all field entomologists of a certain age, certainly those of us over 60, are very familiar with the roar of a hot and smoky two-stroke engine in our ears, coupled with oily hands, aching shoulders and sometimes the smell of burning.  Some younger entomologists may also have had this joyful experience but I suspect they are in a minority among their peers.  The dreaded D-Vac, or to give it its more formal name, The Dietrick Vacuum Sampler was, for a long time, the entomological gold standard in the world of motorised insect sampling.

Part of the UEA cereal aphid research group demonstrating unsafe use of the D-Vac 😊

The D-Vac was the brain wave of an American entomologist Everett Dietrick, who at the time was working on the biological control of the alfalfa aphid, Therioaphis maculata (Dietrick et al., 1959). Their research was hampered by the time they were having to spend estimating the numbers of all the arthropods found in alfalfa fields; they needed a standard sampling method that would allow them to get good estimates of everything rather than using different, and thus time-consuming, methods for each arthropod group.  Essentially, think of a D-Vac as motorised sweep net.  The idea of replacing sweep netting with, in theory at any rate, a non-human biased method* was not new.  Hills (1933) in describing a motorised vacuum pipette for sampling leaf hoppers in beet points out that it is an adaptation of a device put together by a lab assistant in 1926.

The first motorised suction sampler? From Hills (1933) – The modified pipette collector

The first and even clumsier model of the D-Vac (Dietrick et al., 1959), but I suspect more pleasant to use than the back-pack version 🙂

The new improved back-pack version (Dietrick, 1961).  In my experience not very comfortable and on one occasion burst into flames while I was wearing it!

This could, with the aid of a handy pole be used to sample from the top of tall bushes. Not something I have tried so I can’t comment.

While searching for the earliest reference to a motorised suction device that was not a Pooter, I came across one invented a few years earlier than the D-Vac and used by the late, great Southwood of Ecological Methods fame among others, during his PhD (Southwood, 1955; Johnson et al., 1955), which I guess means that it was in operation well before 1955, although the actual full description was not published in a journal until a couple of years later (Johnson et al., 1957).

An earlier suction device used by the late great Southwood during his PhD (1955) (From Johnson et al., 1957).

Ensuring constancy of sample area (From Johnson et al., 1957)

It really does look like the vacuum cleaner we had when I was a kid 🙂

Amusingly, one of the early attempts to replace the D-Vac was actually based on this very vacuum cleaner (Arnold et al., 1973)

I was interested to see that the Johnson apparatus used a barrel to delineate the sample area, something advocated by my colleague Andy Cherrill (Zentane et al., 2016) when using his patent G-Vac, or “Chortis” as we jokingly call it 🙂

A couple of years after I started at Silwood Park and became involved in running the final year field course, a new and revolutionary insect suction sampler appeared on the market – The Vortis™ (Arnold, 1994).  This was lighter than the D-Vac, did not need a bag or net, easier to start, had an ‘idle’ function and mercifully did not have to be carried on your back 🙂

The Vortis™, overall a much pleasanter way to sample insects and generally much easier to start.  Invented in 1993 (Arnold, 1994).

 

Although not cheap, it was less expensive than the D-Vac. This became my suction sampler of choice although we kept our D-vac in good running order so that the students could compare the two samplers.  Surprisingly, few, if any, of the many users of The Vortis™ have done similarly, most just referring to the original description by Arnold (1994), e.g. Mortimer et al., (2002).  This is in marked contrast to the many studies that have compared the D-Vac with sweep-netting, pitfall trapping and swish net sampling (e.g. Johnson et al., 1957; Henderson & Whittaker, 1977; Hand, 1986; Schotzko & O’Keeffe, 1989; Standen, 2000; Brook et al., 2008). There is also a hand-held version of the D-Vac if anyone wants to compare that with the back-pack version.

Jan Dietrick poses with a D-Vac insect Vacuum in Ventura, Calif., on Monday, Oct. 16, 2006. (Photo by Bryce Yukio Adolphson/Brooks Institute of Photography ©2006) http://bryceyukioadolphson.photoshelter.com/image/I0000pmiujJcoGBI

This one looks easier to use than the backpack version but I have never seen it in operation. I am guessing that this was produced in response to the invention of the Vortis™.

Entomologists tend to have limited budgets when it comes to equipment, or anything for that matter, so it is not surprising that they soon came up with the idea of adapting garden leaf blowers into lightweight, inexpensive insect suction samplers (e.g. De Barro, 1991; Stewart & Wright, 1995). These are collectively known as G-Vacs (Zentane et al., 2016) presumably as a reference to their garden origin.

Andy Cherrill test driving his “Chortis” 🙂

 

My colleague Andy Cherrill has compared the catch composition of his own particular G-Vac with that of the Vortis™ and satisfied himself that it is as good as, if not better than the Vortis™ (Cherrill et al., 2017).  Importantly the cost of a G-Vac means that you can get, at least in the UK, six for the same price as a single Vortis™.

I leave you with two fun facts; the two largest motorised insect suction samplers that I have come across are both from the USA (where else?).  The first, mounted on the front of a truck, was used to collect parasites for the biological control of alfalfa aphids.

(1957) http://www.dietrick.org/articles/deke_truckvac.html  Used to collect parasites for mass release against alfalfa aphids.

 

The second, mounted on the front of a tractor was used to control Lygus bugs in strawberry fields in California (Pickel et al., 1994).  The driver/operator in the second example seems to be taking Health & Safety issues a bit more seriously than the team in the first 🙂

Lygus bug control in strawberries, California http://calag.ucanr.edu/Archive/?article=ca.v049n02p19

 

References

Arnold, A.J. (1994) Insect suction sampling without nets, bags or filters. Crop Protection, 13, 73-76.

Arnold, A.J., Needham, P.H. & Stevenson, J.H. (1973) A self-powered portable insect suction sampler and its use to assess the effects of azinphos methyl and endosulfan on blossom beetle populations on oil seed rape. Annals of Applied Biology, 75, 229-233.

Brook, A.J., Woodcock, B.A., Sinka, M. & Vanbergen, A.J. (2008) Experimental verification of suction sampler capture efficiency in grasslands of differing vegetation height and structure. Journal of Applied Ecology, 45, 1357-1363.

Cherrill, A.J., Burkhmar, R., Quenu, H. & Zentane, E. (2017) Suction samplers for grassland invertebrates: the species diversity and composition of spider and Auchenorrhyncha assemblages collected with Vortis (TM) and G-vac devices. Bulletin of Insectology, 70, 283-290.

De Barro, P.J. (1991) A cheap lightweight efficient vacuum sampler.  Journal of the Australian Entomological Society, 30, 207-20.

Dietrick, E.J. (1961) An improved backpack motor fan for suction sampling of insect populations.  Journal of Economic Entomology, 54, 394-395.

Dietrick, E.J., Schlinger, E.I. & van den Bosch, R. (1959) A new method for sampling arthropods using a suction collecting machine and modified Berlese funnel separator.  Journal of Economic Entomology, 52, 1085-1091.

Dietrick. E. J., Schlinger. E. I. & Garber, M. J. (1960). Vacuum cleaner principle applied in sampling insect populations in alfalfa fields by new machine method. California Agriculture January 1960, pp. 9-1 1

Doxon, E.D., Davis, C.A. & Fuhlendorf, S.D. (2011) Comparison of two methods for sampling invertebrates: vacuum and sweep-net sampling. Journal of Field Ornithology, 82, 60-67.

Hand, S.C. (1986) The capture efficiency of the Dietrick vacuum insect net for aphids on grasses and cereals. Annals of Applied Biology, 108, 233-241.

Henderson, 1. F. & Whitaker, T. M. (1977). The efficiency of an insect suction sampler in grassland. Ecological Entomology 2, 57-60.

Hills, O.A. (1933) A new method for collecting samples of insect populationsJournal of Economic Entomology, 26, 906-910.

Johnson, C.G., Southwood, T.R.E. & Entwistle, H.M. (1955) A method for sampling arthropods and molluscs from herbage by suction.  Nature, 176, 559.

Johnson, C.G., Southwood, T.R.E. & Entwistle, H.M. (1957) A new method of extracting arthropods and molluscs from grassland and herbage with a suction apparatus.  Bulletin of Entomological Research, 48, 211-218.

Mortimer, S.R., Booth, R.G., Harris, S.J. & Brown, V.K. (2002) Effects of initial site management on the Coleoptera assemblages colonising newly established chalk grassland on ex-arable land. Biological Conservation, 104, 301-313.

Pickel, C., Zalom, F.G.,  Walsh, D.B. & Welch, N.C. (1994) Efficacy of vacuum machines for Lygus Hesperus (Hemiptera: Miridae) control in coastal California strawberries. Journal of Economic Entomology, 87, 1636-1640.

Schotzko, D.J. & O’Keeffe, L.E. (1989) Comparison of sweep net., D-Vac., and absolute sampling., and diel variation of sweep net sampling estimates in lentils for pea aphid (Homoptera: Aphididae)., Nabids (Hemiptera: Nabidae)., lady beetles (Coleoptera: Coccinellidae)., and lacewings (Neuroptera: Chrysopidae). Journal of Economic Entomology, 82, 491-506.

Southwood, T.R.E. (1955). Some Studies on the Systematics and Ecology of Heteroptera.—Ph.D. thesis, University of London.

Standen, V. (2000) The adequacy of collecting techniques for estimating species richness of grassland invertebrates. Journal of Applied Ecology, 37, 884-893.

Stewart, A.J.A. & Wright, A.F. (1995) A new inexpensive suction apparatus for sampling arthropods in grassland.  Ecological Entomology, 20, 98-102.

Zentane, E., Quenu, H., Graham, R.I. & Cherrill, A.J. (2016) Suction samplers for grassland invertebrates: comparison of numbers caught using Vortis and G-vac devices.  Insect Conservation & Diversity, 9, 470-474.

*

3 Comments

Filed under Entomological classics