Monthly Archives: November 2019

Twisted, hairy, scaly, gnawed and pure – side-tracked by Orders

I’m supposed to be writing a book, well actually two, but you have to be in the right mood to make real progress. Right now, I’m avoiding working on one of the three chapters that I haven’t even started yet* and I really should be on top of them by now as I have already spent the advance, and have less than a year to go to deliver the manuscript 😦 Instead of starting a new chapter I’m tweaking Chapter 1, which includes an overview of Insect Orders.  While doing that I was side tracked by etymology. After all, the word is quite similar to my favourite subject and a lot of people confuse the two. Anyway, after some fun time with my Dictionary of Entomology, (which is much more of an encyclopaedia than a dictionary), and of course Google, I have great pleasure in presenting my one stop shop for those of you who wonder how insect orders got their names.  Here they are, all in one easy to access place with a few fun-filled facts to leaven the mixture.

Wings, beautiful wings (very much not to scale)

First, a little bit of entomological jargon for those not totally au fait with it.  Broadly speaking we are talking bastardised Greek and Latin. I hated Latin at school but once I really got into entomology I realised just how useful it is.  I didn’t do Greek though 😊, which is a shame as Pteron is Greek for wing and this is the root of the Latin ptera, which features all over the place in entomology.

Since I am really only talking about insects and wings, I won’t mention things like the Diplura, Thysanura and other Apterygota.  They don’t have wings, the clue being in the name, which is derived from Greek; A = not, pterygota, derived from the Greek ptérugos = winged, which put together gives us unwinged or wingless. In Entojargon, when we talk about wingless insects we use the term apterous, or if working with aphids, aptera (singular) or apterae (plural).   I’m going to deal with winged insects, the Exopterygota and the Endopterygota. The Exopterygota are insects whose wings develop outside the body and there is a gradual change from immature to adult.  Think of an aphid for example (and why not?); when the nymph (more Entojargon for immature hemimetabolus insects) reaches the third of fourth instar (Entojargon for different moulted stages), they look like they have shoulder pads; these are the wing buds, and the process of going from egg to adult in this way is called incomplete metamorphosis.

Fourth instar alatiform nymph of the Delphiniobium junackianum the Monkshood aphid.  Picture from the fantastic Influential Points site https://influentialpoints.com/Images/Delphiniobium_junackianum_fourth_instar_alate_img_6833ew.jpg (Any excuse for an aphid pciture)

In the Endopterygota, those insects where the wings develop inside the body, e.g butterflies and moths, the adult bears no resemblance to the larva and the process is described as complete metamorphosis and the life cycle type as holometabolous. It is also important to note that the p in A-, Ecto- and Endopterygota is silent.

Now on to the Orders and their names.  A handy tip is to remember is that aptera means no wings and ptera means with wings.  This can be a bit confusing as most of the Orders all look and sound as if they have wings.  This is in part, due to our appalling pronunciation of words; we tend to make the syllables fit our normal speech patterns which doesn’t necessarily mean breaking the words up in their correct component parts. Diptera and Coleoptera are two good examples – we pronounce the former as Dip-tera and informally as Dips.  From a purist’s point of view, we should be pronouncing the word Di-tera – two wings, and similarly, Coleoptera as Coleo-tera, without the p 🙂 Anyway, enough of the grammar lessons and on with the insects.

Exopterygota

Ephemeroptera The Mayflies, lasting a day or winged for a day J The oldest extant group with wings. They are also a bit weird, as unlike other Exopterygota they have a winged sub-adult stage

Odonata              Dragonflies and Damselflies – think dentists, toothed, derived from the Greek for tooth, odoús. Despite their amazing flight capability, the name refers to their toothed mandibles.  The wings do get a mention when we get down to infraorders, the dragonflies, Anisoptera meaning uneven in that the fore and hind wings are a different shape and the damselflies, Zygoptera  meaning even or yoke, both sets of wings being pretty much identical.

Dermaptera       Earwigs, leathery/skin/hide, referring to the fore-wings which as well as being leathery are reduced in size.  Despite this, the much larger membranous hind wings are safely folded away underneath them.

A not very well drawn (by me) earwig wing 😊

Plecoptera          Stoneflies, wickerwork wings – can you see them in the main image?

Orthoptera         Grasshoppers and crickets, straight wings, referring to the sclerotised forewings that cover the membranous, sometimes brightly coloured hind wings.  Many people are surprised the first time they see a grasshopper flying as they have been taken in by the hopper part of the name and the common portrayal of grasshoppers in cartoons and children’s literature; or perhaps not read their bible “And the locusts went up over all the land of Egypt, and rested in all the coasts of Egypt”. I think also that many people don’t realise that locusts are grasshoppers per se.

Grasshopper wings

Dictyoptera        Cockroaches, termites and allies, net wings

Notoptera           The order to which the wingless Ice crawlers (Grylloblattodea) and Gladiators Mantophasmatodea) belong. Despite being wingless, Notoptera translates as back wings. It makes more sense when you realise that the name was coined when only extinct members of this order were known and they were winged.

Mantodea           Mantids, the praying mantis being the one we are all familiar with, hence the name which can be translated as prophet or soothsayer

Phasmotodea    Phasmids, the stick insects and leaf insects – phantom, presumably referring to their ability to blend into the background.

Psocoptera         Bark lice and book lice, gnawed or biting with wings. In this case the adjective is not in reference to the appearance of the wings, but that they are winged insects that can bite and that includes humans, although in my experience, not very painful, just a little itchy. They are also able to take up water directly from the atmosphere which means that they can exploit extremely dry environments.

Embioptera        Web spinners, lively wings. Did you know that Janice Edgerly-Rooks at Santa Clara University has collaborated with musicians to produce a music video of Embiopteran silk spinning? https://www.youtube.com/watch?v=veehbMKjMgw

Zoraptera            Now this is the opposite of the Notoptera, the Angel insects, Zora meaning pure in the sense of not having any wings.  Unfortunately for the taxonomists who named this order, winged forms have now been found 🙂

Thysanoptera    Thrips and yes that is both the plural and singular, thysan meaning tassel wings, although I always think that feather would be a much more appropriate description.

Feathery thrips wing – Photo courtesy of Tom Pope @Ipm_Tom

Hemiptera          True bugs – half wings.  The two former official suborders were very useful descriptions, Homoptera, e.g. aphids, the same. Heteroptera such as Lygaeids, e.g. Chinch bugs, which are often misidentified by non-entomologists as beetles where the prefix Hetero means different, referring to the fact that the fore wings are hardened and often brightly coloured in comparison with the membranous hind wings.

Coreid bug – Gonecerus acuteangulatus – Photo Tristan Banstock https://www.britishbugs.org.uk/heteroptera/Coreidae/gonocerus_acuteangulatus.html

Phthiraptera      The lice, the name translates as wingless louse. I guess as one of the common names for aphids is plant lice they felt the need to make the distinction in the name.

Siphonaptera     Fleas – tube without wings, referring to their mouthparts

 

Endopterygota

Rhapidioptera   Snakeflies – needle with wings, in this case referring to the ovipositor, not to the wings, which are similar to those of dragonflies.

The pointy end of a female snakefly

Megaloptera      Alderflies, Dobsonflies – large wings

Neuroptera        Lacewings – veined wings

Coleoptera         Beetles – sheathed wings, referring to the hardened forewings, elytra, that cover the membranous hind wings. The complex process of unfolding and refolding their hind wings means that many beetles are ‘reluctant’ to fly unless they really need to.

Strepsiptera       These are sometimes referred to as Stylops.  They are endoparasites of other insects. The name translates as twisted wings. Like flies, they have only two pairs of functional wings the other pair being modified into halteres.  Unlike flies, their halteres are modified fore wings.  Their other claim to fame is that they feature on the logo of the Royal Entomological Society.

The Royal Entomological Society Strepsipteran

Mecoptera         Scorpionflies, hanging flies – long wings.  Again, not all Mecoptera are winged, but those that are, do indeed have long wings in relation to their body size.

Male Scorpionfly, Panorpa communis.  Photo David Nicholls https://www.naturespot.org.uk/species/scorpion-fly

Siphonaptera     Fleas – tube no wings. The tube part of the name refers to their mouthparts.

Diptera                 Flies, two wings, the hind pair are reduced to form the halteres, which are a highly complex orientation and balancing device.

Trichoptera         Caddisflies, which are, evolutionarily speaking, very closely related to the Lepidoptera.  Instead of scales, however, their wings are densely cover with small hairs, hence the name hairy wings.  Some species can, at first glance, be mistaken for small moths. If you want to know more about caddisflies I have written about them here.

Lepidoptera       Moths and butterflies, scaly wings; you all know what happens if you pick a moth or butterfly up by its wings.

Moth wing with displaced scales

 

Hymenoptera    Wasps, bees, ants – membrane wings

Wing of a wood wasp, Sirex noctilio

 

And there you have it, all 30 extant insect orders in one easy location.

 

*

 

8 Comments

Filed under EntoNotes

Weevily clever – on being behaviourally resistant

I am currently sharing my office with a Tupperware container of weevils, Hylobius abietis, the Large pine weevil to be exact.  The reason, just in case you were wondering, is that I have had an undergraduate doing her final year research project with me on ways in which this highly pestiferous weevil might be prevented from feeding on newly planted conifers.  The weevils in my office are those that were left over from her project and being the old softie that I am, and having worked on Hylobius since 1987 I couldn’t bear to throw them away :.)

My office pets – easy to maintain and quite cute

Adult and larvae of Hylobius abietis

You might think that having worked on an insect with the sole aim of trying to reduce its pestiferousness, that I might have succeeded by now.  Say that to the many scientists who have addressed this problem for more than a century and you will be rewarded with the sound of hollow laughter.  The laughter is even hollower if you point them to the statement made by the first UK Forestry Commission entomologist,  J W Munro, who a mere ten years after the formation of the Forestry Commission wrote “The pine weevil (Hylobius abietis) problem still occupies the attention of the Forestry Commissioners” Munro (1929).  Ninety years on I can make exactly the same statement and judging by the global number of papers written about Hylobius, I think I can confidently state that the same can be said for the forest industry as a whole.

Not a problem that is going away! Papers published on Hylobius abietis since 1910.  Data from Google Scholar and Web of Science.

So why is the large pine weevil, or Hylobius as those of us who work on it or attempt to control it, call it so hard to manage? The simple answer is that we have helped it become a pest in the first place and in the second place it has a couple of attributes that give it a bit of an edge. You might even go so far as to say that it is a clever little beast.

First a little bit of history is in order. Up until the beginning of the 20th century references to Hylobius are few and far between, especially in the UK, although there are some German references from the latter half of the 19th Century, a reflection of the fact that the German forest industry was well in advance of that in the UK. Prior to the establishment of conifer plantations, populations of Hylobius would have been small and scattered as the larvae need conifer stumps or large pieces of fallen branch in which to develop.  The adults, which can live for up to four years (Leather et al., 1999), would normally feed on the cambium of thin barked twigs in the upper canopy of conifer trees, and the larvae, depending on how shaded the host stump was, could take from a year to two years to reach adulthood.  The adults are extremely responsive to host volatiles (Nordenhem & Eidmann, 1991) and can locate host plants and egg-laying sites remarkably quickly*.  Plantation forestry with its cycles of clear-fell and subsequent restocking with two year old conifer saplings has been akin to setting up a deliberate breeding programme for Hylobius.  In some cases 100% of all new planting can be destroyed by the adults ring-barking the saplings and on average 30% would be lost if plants were not pre-treated with insecticide.

How to turn an innocuous forest insect into a major pest. Plantation forestry and how it created a forest pest. (Figure adapted from Leather et al, 1999).

Over the years there have been a number of attempts at controlling Hylobius without using insecticides, including cultural methods, physical barriers and biological control using entomopathogenic nematodes (Williams et al., 2013), none of which have been as effective as insecticidal treatment. The latter, although reasonably effective at preventing sapling damage, may not, however, be reducing Hylobius numbers.  This is because Hylobius is, as well as being good at detecting host volatiles, also great at detecting and avoiding insecticides.  A former PhD student of mine, Dan Rose, showed this is in a series of elegant experiments where he manipulated insecticide presence and absence at different scales (Rose et al., 2005).  First he tested if adult Hylobius could detect the presence of an insecticide at a whole plant level, by giving them a choice in semi-field conditions between treated and untreated saplings.  They could, they avoided feeding on treated plants.  Then he gave them a choice of plants where he had sprayed half the canopy with an insecticide, and, yes, you guessed it, they only fed on the untreated parts.

 Given a choice, adult Hylobius abietis will not feed on insecticide treated plants or on those parts of a tree that have been treated with an insecticide

Dan wondered just how good their discriminatory powers were, so using our standard choice boxes,

Standard Hylobius abietis host choice test box

he presented his weevils with pieces of pine twig that had had insecticide painted on to them alternating with equal width untreated stripes, and yes, you guessed, they only ate the untreated parts of the twig.

  Adult Hylobius abietis only fed on the untreated stripes.

Next he sprayed twigs all over, but some with large droplets and some with fine droplets and then gave them the choice between a coarse sprayed twig and a fine sprayed one and as you may have guessed,  they were able tell the difference, and fed on the twigs with the bigger spaces between the droplets of insecticide.

Given a choice between twigs treated with a large droplet spray and a fine droplet spray, adult Hylobius abietis will feed on the twigs with the large droplet size spray application.

 

So this is an indication that adult Hylobius are behaviourally resistant to insecticides, well at least the ones he tested them against. Hylobius are not alone in possessing this trait, other weevils (Haddi et al., 2015) and at least one aphid species (Fray et al., 2014) are also able to detect and avoid insecticide treated substrates.

Hylobius adults are also quite resistant to insecticide poisoning when you force them to eat treated plant material. Some individuals take almost three weeks to die and then if they are removed from the insecticide treated food they soon return to normal.

Figure borrowed from Rose et al.,( 2005)

Remarkable rate of recovery (Figure borrowed from Rose et al., (2006)

 

Hylobius abietis adults are able to recover from pesticides if given the chance, even after a week of exposure.

Given that they are able to recognise and avoid eating treated plant material and if they do, show remarkable powers of recovery, it is very likely that in the field, the reason that the insecticidal treatment works is more to do with repellence than toxicity, so it is unlikely that weevil popualtions are reduced.

To reduce populations rather than divert them elsewhere and given the pressure to remove pesticides from the forest environment, a biological control approach is the logical best option. Entompathogenic nematodes are probably the best option and have received  a lot of attention over the last thirty years or so (Williams et al., 2013), but again Hylobius has a tactic or two up its elytra to make it more difficult to control than other insect pests.  First, like its North American cousin, Hylobius pales (Cornell & Wilson, 1984; Moore, 2001), it can play dead, a phenomenon known as thanatosis or death feigning. In human terms, when they see/feel a nematode approaching, they hold their breath and collapse in a heap. In insect terms, they close their spiracles, the point of entry for the nematodes, and hope that the nematodes give up and go away before they have to breathe again.  If they do have to breathe when the nematodes are still in contact with them then clever old Hylobius is able to brush them away (Ennis et al., 2010). Biological control of adult Hylobius is thus unlikely to be successful, and the larvae and their stump habitats are now the main target of biological control methods (Williams et al., 2013).

Clever, cute and long-lived, what more can you ask for in a pet or should that be pest? 🙂

 

References

Cornell, J.A. & Wilson, L.F.  (1984) Dispersion and seasonal activity of the pales weevil, Hylobius pales (Coleoptera: Curculionidae), in Michigan Christmas tree plantations. Canadian Entomologist, 116, 711-717.

Ennis, D.E., Dillon, A.B. & Griffin, C.T. (2010) Pine weevils modulate defensive behaviour in response to parasites of differing virulence. Animal Behaviour, 80, 283-288.

Fray, L.M., Leather, S.R., Powell, G., Slater, R., McIndoe, E. & Lind, R.J. (2014) Behavioural avoidance and enhanced dispersal in neonicotinoid-resistance Myzus persicae (Sulzer). Pest Management Science, 70, 88-96.

Haddi, K., Mendonça, L.P., Dos Santos, M.F., Guedes, R.N.C & Oliveira, E.E. (2015) Metabolic and behavioral mechanisms of Indoxacarb resistance in Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Economic Entomology, 108, 362-369.

Leather, S.R., Day, K.R. & Salisbury, A.N. (1999) The biology and ecology of the large pine weevil, Hylobius abietis (Coleoptera: Curculionidae): a problem of dispersal? Bulletin of Entomological Research, 89, 3-16.

Moore, R. (2001) Emergence trap developed to capture adult large pine weevil Hylobius abietis (Coleoptera: Curculionidae) and its parasite Bracon hylobii (Hymenoptera: Braconidae). Bulletin of Entomological Research, 91, 109-115.

Munro, J.W. (1929) The biology and control of Hylobius abietis L. Part 2. Forestry, 3, 61-65.

Nordenhem, H. & Eidmann, H.H. (1991) Response of the pine weevil Hylobius abietis L. (Col. Curculionidae) to host volatiles in different phases of its adult life cycle. Journal of Applied Entomology, 112, 353-358.

Nördlander, G., Hellqvist, C., Johansson, K. & Nordenhem, H. (2011) Regeneration of European boreal forests: effectiveness of measures against sedling mortality caused by the pine weevil Hylobius abietis. Forest Ecology and Management, 262, 2354-2363.

Rose, D., Leather, S.R. & Matthews, G.A. (2005) Recognition and avoidance of insecticide-treated Scots pine (Pinus sylvestris) by Hylobius abietis (Coleoptera: Curculionidae): implications for pest management strategies. Agricultural and Forest Entomology, 7, 187-191.

Rose, D.R., Matthews, G.A. & Leather, S.R. (2006) Sub-lethal responses of the large pine weevil, Hylobius abietis, to the pyrethroid insecticide lambda-cyhalothrin. Physiological Entomology, 31, 316-327.

Williams, C.D., Dillon, A.B., Harvey, C.D., Hennessy, R., McNamara, L. & Griffin, C.T. (2013) Control of a major pest of forestry, Hylobius abietis, with enomopathogenic nematodes and fungi using eradicant and prophylactic strategies. Forest Ecology & Management, 305, 212-222.

 

6 Comments

Filed under EntoNotes

Pick & Mix 38 – a very mixed bag

The problem with ‘Sugar Daddy’ science, why state funding is better

Simon Leadbeater on rewilding a planation woodland

Did you know that Scotland has rain forests?

Some advice on writing papers from novelist Cormac McCarthy

Making cities greener – what we can do and what benefits result

If you like the Moomins you will appreciate this

Clothing accessories that pay homage to the insect world; some other animals too 😊

Freedom of press and environmental protection – did you know that they are linked? Jeff Ollerton and colleagues explore this interesting topic

Working from home might not be as stress-free as you think – go to work instead

Did you know that there are more male specimens of birds and mammals in museum collections than females? Press release here, actual paper here

 

Leave a comment

Filed under Pick and mix