Pick and mix 6 – my top ten links from the past week

Some more links to follow, or not


An interesting article in Nature (makes a change) about the history of the peer review process

On the wondrous properties of spider silk and what we can use it for now and in the future

Using fake caterpillars to assess predation risk around the world

Speaking of fake, a spoof paper fooled a social science journal and two referees

On the value of Natural History Museums and why they should be preserved

On the importance of natural history training, although this is US-centric it is equally, if not more relevant to the UK as I have pointed out more than once

The Acrobatic Fly, a natural history (or should that be unnatural) film from 1910 – only three minutes so worth the time J

On broadening the western human diet to solve global food problems

How studying 25 000 dung beetles helped unravel the complexities of dung beetle evolution – great to see one of my former MSc students involved in this huge project

And to end with something completely different, a great post about what the charity Brass for Africa is doing for street children in Uganda through the medium of music teaching – I should add that my wife is one of the Trustees so I have a vested interest in advertising this 🙂


Leave a comment

Filed under Pick and mix

Data I am never going to publish – A tale of sixty trees

In 1981 I spent a lot of time trudging through snow, cross-country skiing and snow-shoeing my way across the snowy wastes of Finland to snip twigs off bird cherry trees.  This was part of my post-doc which was to develop a forecasting system for the bird cherry-oat aphid, Rhopalosiphum padi.  On returning to the lab I then spent many a happy hour counting how many aphid eggs were nestled in between the buds and the stem on each twig.  It was while doing this that I noticed that some of the twigs were infested with the overwintering larval shields of the bird cherry ermine moth, Yponomeuta evonymellus.  Of course I then started counting them as well 🙂  I noticed that trees with lots of aphid eggs didn’t have very many larval shields and I wondered why. Some later observations from marked trees in Scotland appeared to provide evidence that the aphids and the moths tended to either prefer different trees or perhaps excluded each other.

Negative correlation between moths and aphids – more moths equals fewer aphids and vice versa

Based on these data I hypothesised that the two insects were indirectly competing for resources by altering plant chemistry and/or architecture thus making the trees less or more suitable for egg laying in the autumn (Leather, 1988).  I tested this experimentally when I was working for the Forestry Commission in Scotland using potted bird cherry trees that I defoliated to a lesser or greater extent to see if I could induce changes in foliar quality and tree growth rates that might influence subsequent colonisation by the aphids and moths. As predicted, those trees that had been defoliated, albeit by me and not by moth larvae, were less attractive to aphids in the autumn (Leather, 1993).  These effects were still apparent five years after the beginning of the experiment (Leather, 1995) when I had to desert my trees as I moved to a new position at Imperial College’s Silwood Park campus.

Given that apart from the location, the SE of England, this was my idea of a dream job for life (colleagues at the time included John Lawton, Mike Hassell, Bob May, Stuart McNeill, Mike Way, Brad Hawkins, Shahid Naeem, Mike Hochberg, Chris Thomas to name but a few), I decided to start up two long-term projects to see me through the next 30 years, one observational (my 52 sycamore tree project), the other experimental, a follow up to my bird cherry defoliation experiment.

I went for a simplified design of my earlier experiments, just two defoliation regimes, one to mimic aphid infestation (50%), the other to mimic bird cherry ermine moth defoliation (100%) and of course a non-defoliated control.  I also planted the trees in the ground to better simulate reality.  Using potted plants is always a little suspect and I figured that I would need to do rather a lot of re-potting over the next 30 years 🙂

The grand plan!

I sourced my trees from a Forestry Commission nursery thinking that as the national organisation responsible for tree planting in the UK I could trust the provenance of the trees.  Things didn’t go well from the start.  Having planted my trees in autumn 1992 and established the treatments in the spring of 1993 I discovered that my bird cherry, rather than being from a native provenance (seed origin) were originally from Serbia! Hmm 🙂  It was too late to start again, so I decided to carry on.  After all, bird cherry although widely planted in the SE, has a native distribution somewhat further north and west, which meant I was already operating close to the edge of ‘real life’, so what did an extra 1600 kilometres matter?

The mainly ‘natural’ distribution of bird cherry (left, Leather, 1996) and the current distribution including ‘introduced’ trees https://www.brc.ac.uk/plantatlas/index.php?q=plant/prunus-padus

Next, I discovered that my fence was neither rabbit nor deer proof.  I almost gave up at this point, but having invested a lot of time and energy in setting up the plot I once again decided to carry on. On the plus side, the trees most heavily defoliated and bitten back were mainly from the 100% defoliation treatment, but did give me some negative growth rates in that year.

My original plan was to record height (annually), bird cherry egg numbers (every December), bird cherry ermine moth larval shields (annually), bud burst and leaf expansion once a week, leaf-fall (annually), and once a month, defoliation rates in two ways, number of damaged leaves and an overall estimation of percentage defoliation.  This was a personal project, so no grant funding and no funding for field assistants.  It soon became clear, especially when my teaching load grew, as Imperial started replacing whole organism biologists with theoretical and molecular biologists, and I was drafted in to take on more and more of the whole organism lecturing, that I would not be able to keep both of my long term projects going with the same intensity.  Given the ‘problems’, associated with the bird cherry project, I decided  that I would ditch some of my sampling, bud burst was scored on 21st March every year and defoliation only measured once, in late summer and egg sampling and height recording came to a halt once the trees grew above me (2005)!  This allowed me to carry on the sycamore project as originally intended*.

I kept an eye on the trees until I left Silwood Park in 2012, but by 2006 I was only monitoring bud burst and leaf fall feeling that this might be useful for showing changes in phenology in our ever-warming world.  One regret as I wandered between the then sizeable trees in the autumn of 2012 was that I had not taken a before and after photograph of the plots.  All I have are two poor quality photos, one from 2006, the other from 2012.

The Sixty Tree site April 2006.

The Sixty Tree site April 2010 with a very obvious browse line


So, after all the investment in time, and I guess to a certain extent money (the trees and the failed fencing, which both came out of my meagre start-up funding**), did anything worthwhile come out of the study?

The mean number of Rhopalosiphum padi eggs per 100 buds in relation to defoliation treatment

As a long-time fan of aphid overwintering it was pleasing to see that there was a significant difference not only between years (F= 8.9, d.f. = 9/29, P <0.001), but also between treatments with the trees in the control treatment having significantly more eggs laid on them than the 100% defoliation treatment (F= 9.9, d.f. = 2/ 29, P <0.001 with overall means of 1.62, 1.22 and 0.65 eggs/100 buds).  This also fitted in with the hypothesis that trees that are defoliated by chewing herbivores become less suitable for aphids (Leather, 1988).  I must admit that this was a huge surprise to me as I had thought that as all the trees were attacked by deer the year after the experimental treatments they would all respond similarly, which is why I almost gave up the experiment back in 1994.

Bud burst stage of Prunus padus at Silwood Park on March 21st 1996-2012; by treatment and combined

When it came to budburst there was no treatment effect, but there was a significant trend to earlier budburst as the trees became older which was strongly correlated with warmer springs, although as far as spring temperatures were concerned there was no significant increase with year.

Mean spring temperature (Silwood Park) 1993-2012 and relationship between mean spring temperature and bud bust stage on 21st March.

Mean date of final leaf fall of Prunus padus at Silwood Park 1995-2012; by treatment and combined

At the other end of the year, there was a significant difference between date of final leaf fall between years but no significant difference between treatments.  In retrospect I should have adopted another criterion.  My date for final leaf fall was when the last leaf fell from the tree.  Those of you who have watched leaves falling from trees will know that there are always a few who are reluctant to make that drop to the ground to become part of the recycling process.  Even though they are very obviously dead, they hang there until finally dislodged by the wind.   I should really have used a measure such as last leaf with any pigment remaining.  I am sure that if I could be bothered to hunt down the wind speed data I would find that some sort of correlation.

Mean height (cm) of Prunus padus trees at Silwood Park 1993-2005 and Diameter at Breast Height (DBH) (cm) at the end of 2012

Except for the year after the deer attack, the trees, as expected, grew taller year by year.  There was however, no significant difference between heights reached by 2005 or in DBH at the end of 2012 despite what looked like a widening gap between treatments.

Defoliation scores of Prunus padus at Silwood Park 1993-2004; % leaves damaged and overall defoliation estimates

My original hypothesis that trees that were heavily defoliated at the start of their life would be more susceptible to chewing insects in later life, was not supported.  There was no significant difference between treatments, although, not surprisingly, there was a significant difference between years.  Average defoliation as has been reported for other locations was about 10% (Kozlov et al., 2015; Lim et al., 2015).

Number of Prunus padus trees with severe deer damage

That said, when I looked at the severity of deer attack, there was no effect of year but there was a significant effect of treatment, those trees that had been 100% defoliated in 1993 being most attractive to deer.   In addition, 20% of those trees were dead by 2012 whereas no tree deaths occurred for the control and less severely defoliated treatments.

I confess to being somewhat surprised to find as many significant results as I did from this simple analysis and was momentarily tempted to do a more formal analysis and submit it to a journal.  Given, however, the number of confounding factors, I am pretty certain that I would be looking at an amateur natural history journal with very limited visibility.  Publishing it on my blog will almost certainly get it seen by many more people, and who knows may inspire someone to do something similar but better.

The other reason that I can’t be bothered to do a more formal analysis is that my earlier work on which this experiment was based has not really hit the big time, the four papers in question only accruing 30 cites between them.  Hardly earth shattering despite me thinking that it was a pretty cool idea;  insects from different feeding guilds competing by changing the architecture and or chemsitry of their host plant.  Oh well.  Did anything come out of my confounded experiment or was it a total waste of time?  The only thing published from the Sixty Trees was a result of a totally fortuitous encounter with Marco Archetti and his fascination with autumn colours (Archetti & Leather, 2005), the story of which I have related in a previous post, and which has, in marked contrast to the other papers, had much greater success in the citation stakes 🙂

And finally, if anyone does want to play with the data, I am very happy to give you access to the files.


Archetti, M. & Leather, S.R. (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos, 110, 339-343. 50 cites

Kozlov, M.V., Lanta, V., Zverev, V., & Zvereva, E.L. (2015) Global patterns in background losses of woody plant foliage to insects. Global Ecology & Biogeography, 24, 1126-1135.

Leather, S.R. (1985) Does the bird cherry have its ‘fair share’ of insect pests ? An appraisal of the species-area relationships of the phytophagous insects associated with British Prunus species. Ecological Entomology, 10, 43-56.  14 cites

Leather, S.R. (1988) Consumers and plant fitness: coevolution or competition ? Oikos, 53, 285-288. 10 cites

Leather, S.R. (1993) Early season defoliation of bird cherry influences autumn colonization by the bird cherry aphid, Rhopalosiphum padi. Oikos, 66, 43-47. 11 cites

Leather, S.R. (1995) Medium term effects of early season defoliation on the colonisation of bird cherry (Prunus padus L.). European Journal of Entomology, 92, 623-631. 4 cites

Leather, S.R. (1996) Biological flora of the British Isles Prunus padus L. Journal of Ecology, 84, 125-132.  14 cites

Lim, J.Y., Fine, P.V.A., & Mittelbach, G.G. (2015) Assessing the latitudinal gradient in herbivory. Global Ecology & Biogeography, 24, 1106-1112.



*which you will be pleased to know, is being analysed as part of Vicki Senior’s PhD project, based at the University of Sheffield.

**£10 000 which even in 1992 was not overly-generous.


Filed under EntoNotes, Science writing, Uncategorized

Pick and mix 5 – more links to ponder

Another set of links that interested me enough to read (and this week, watch) them all the way through.


Interesting (tongue-in-cheek) post about using Ribwort plantain as a garden flower

Jo Cartmell (@watervole) on how to turn your boring lawn into a beautiful wildflower meadow

Gretchen Vögel asks – Where have all the insects gone?

How ploughing and deep tillage methods are harming earthworms worldwide

We have been telling our students for years that one of the advantages of biological control compared with conventional use of pesticides is that prey are unlikely to evolve resistance to natural enemies.  Well, we were wrong – here is a story about a pest weevil that has done just that  – unfortunately behind a pay wall

Insects and ethics – Some very interesting points, but as much as I love insects which I do passionately, I am very happy, that ethically speaking, they are not classified as animals. Research would be impossible. That said, all insects in my garden live a free and happy life and are never knowingly killed, not even if they are on my bean plants 🙂

A nice article about photographing spiders and also mentions ethics

Here Markus Eichhorn writes about the questionable ethical standpoints of some otherwise reputable scientists from the last century

An interactive blog post about global crop diversity and eating habits – quite revealing, try it and see

An interesting and well produced short video that could be useful if you want to explain how sustainable management of tropical forests helps the planet and why you should only buy FSC certified products


Leave a comment

Filed under Pick and mix

Arthropod orchids – who’s fooling who?

A few weeks ago I read the first volume of Jocelyn Brooke’s Orchid trilogy, The Military Orchid. I have never been a great fan of orchids, my main experience of them being as ornamental house plants in which context I have always found them ugly, ungainly and obtrusive.

My colleague Lucy’s orchid ‘brightening up’ our communal office kitchen area

‘Artistically displayed’ for sale by an on-line florist – still just as ugly

Jocelyn Brooke’s account of his search for the Military Orchid was however a bit of a revelation.  His obsession with the eponymous orchid reminded me of how I quite liked seeing the first emerging spikes of the common spotted orchid, Dactylorhiza fuchsii appearing in Heronsbrook Meadow at Silwood Park as I returned from my lunchtime run.  A little bit later Jeff Ollerton posted an interesting article about orchid pollination myths and this got me thinking about the common names of our native UK orchids, especially those named after arthropods.

It turns out that there are fewer than I thought; Bee, some varieties of which seem to be called the wasp orchid, the Fly, Lesser butterfly, Greater butterfly, Early spider and Late spider orchid being the lot.  My self-imposed mission was to first find a suitable photograph of each species to see if it did look like its namesake and secondly to identify the main pollinators.  Or to put it another way, exactly what are they mimicking and what or who are they really fooling?  Orchids generally speaking are honest brokers, providing nectar as a resource for pollination services (Nilsson, 1992).  About a quarter of orchid species are however frauds or cheats (Nilsson, 1992), either pretending to be a food source or a receptive female insect, nutritive deceptive or sexually (reproductive) deceptive as the jargon has it (Dafni, 1984).  Ophrys orchids are sexually deceptive (Nilsson 1992).

The Bee Orchid, Ophrys apifera, is pollinated by a solitary mining bee, Eucera longicornis  (Kullenberg, 1950) belonging to a group commonly known as long horned bees, which in the UK is rather uncommon meaning that the Bee Orchid is generally self-pollinated.

The Bee Orchid, Ophrys apiferahttps://thmcf.files.wordpress.com/2013/07/bee-orchid-imc-3702.jpg with pollinator Eucera longicornis http://www.bwars.com/bee/apidae/eucera-longicornis

If you look at the female bee, which is what we suppose the flower is mimicking, you can just about convince yourself that there is a slight resemblance between the two.  Insects of course do not see things the same way humans do (Döring et al., 2012) so what we think is almost certainly irrelevant.  That said, it doesn’t actually have to be a particularly good visual mimic for the insects either, as it is the smell that really matters and as long as the flower is the right shape to enable the deceived male to copulate in such a way that the flower is fertilized that is all that matters.   To quote Dafni (1984) “The olfactory specificity allows a high degree of morphological variability because the selective pressures leading to uniformity-as a means for better recognition-are relaxed. When odors become the main means of attraction, they efficiently serve as isolating agents among closely related species

The fly orchid, Ophrys insectiflora, is also sexually deceptive, but despite its common name is pollinated by digger wasps and bees (Kullenberg, 1950; Wolff 1950).

Ophrys insectifera   Fly orchid  By Jörg Hempel, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=32968796  with pollinator Argogorytes mystaceus (formerly Gorytes) http://www.bwars.com/category/taxonomic-hierarchy/wasp/crabronidae/nyssoninae/gorytes

Oddly, despite being sexually deceptive it does, at least in my opinion, resemble its pollinators fairly well.

Next up (alphabetically), we have the Lesser Butterfly Orchid, Planthera bifolia, which despite its name is pollinated by night-flying hawk moths,


The Lesser Butterfly Orchid, Planthera bifolia.  By © Hans Hillewaert, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=4112191 and the two leading pollinators Hyloicus pinastri and Deilephila elpenor.

most commonly by the Pine Hawk Moth, Hyloicus pinastri and the Elephant Hawk Moth, Deilephila elpenor  (Nilsson (1983). These orchids provide a nectar reward, and attract their pollinators by producing a strong scent (Nilsson, 1978) easily detected by humans even at a distance (Tollsten & Bergström, 1989).  As an added extra, the flowers are very light-green and also highly light-reflecting, giving the moths a visual as well as an olfactory signal (Nilsson, 1978).  In terms of shape the flower more closely resembles H. pinastri.

The closely related Greater Butterfly Orchid, Planthera chlorantha is also pollinated by night-flying moths, the two Elephant hawk moths  Deiliphila porcellus and D.elpenor, 

Platanthera chlorantha,  The Greater Butterfly  Orchid https://c1.staticflickr.com/8/7795/17960863138_721033c527_b.jpg with hawk moth and Noctuid pollinators.

but mainly by Noctuid moths, most commonly, Apame furva (The Confused) and  A. monoglypha (the Dark Arches) Nilsson (1983).  Although recent video evidence has shown that the Pine Hawk moth also pollinates it (Steen, 2012).  Like the Lesser Butterfly Orchid, the flower only vaguely resembles its pollinators.  The chemicals responsible for the characteristic and intense fragrances of these two closely related orchids differ between the species and is probable that they are linked to the preferences of the different pollinator species (Nilsson, 1978).

Despite its name and suggested resemblance to its namesake, the Early Spider Orchid, Ophrys sphegodes is pollinated by a solitary bee,

Ophrys sphegodes, The Early Spider Orchid


Andrena nigroaenea (Schiestl et al. 2000).  The scent of the nectarless flower, closely resembles the female sex pheromone of the bee and fools the male into ‘mating’ with it (Schiestl et al., 2000).  If you allow your imagination to run riot you could possibly just about see the flower as a giant female bee which might act as an extra stimulus for an excited male bee (Gaskett, 2011).

The final arthropod orchid is the Late Spider, Ophrys fuciflora; do be careful how you pronounce it, a soft c might be advisable 🙂

Ophrys fuciflora, the Late Spider orchid and two of its documented pollinators, Eucera longicornis (originally tuberculata) and Phyllopertha horticola.  Orchid Photo by © Pieter C. Brouwer and his Photo Website

As with all Ophrys orchids, they are sexually deceptive and attract male insects to their nectar-free, but highly scented flowers, with the promise of a good time Vereecken et al., 2011).  Most pollination is by solitary bees (Kullenberg, 1950) although the Garden Chafer, Phyllopertha horticola has been recorded as pollinating it in northern France (Tyteca et al., 2006).  Again both pollinators could be said to resemble the flowers to some extent

That concludes my tour of UK arthropod orchids.  Having learnt a lot about other orchids in the last couple of weeks while researching this article it seemed a shame to waste it.  So, as an added bonus, I’m going to finish with a few imaginatively named orchids, the names of which do not refer to their pollinators but rather to the imagination of their human namers.

Orchis anthropophora, The Man Orchid.  Photo by Erwin Meier

This not usually pollinated by sexually-deceived humans but by two beetles, Cantharis rustica (soldier beetle) and Cidnopus pilosus (click beetle) and also by two species of sawfly Tenthredopsis sp. and Arge thoracia (Schatz, 2006).

Orchis simia, The Monkey Orchid. Photo Dimìtar Nàydenov

Again, as with the Man Orchid, the Monkey Orchid, is not pollinated by cruelly deceived anthropoids.  There are, as far as I can discover, only a few confirmed pollinators of O. simia.  They include the beetle C. pillosus, the moth Hemaris fuciformis and some hymenopterans such as honeybees (Schatz, 2006).  According to PlantLife, hybrids of the Man Orchid and Monkey Orchid are called the Missing Link Orchid.

My fellow blogger Jeff Ollerton and his colleagues (Waser et al., 1996), point out that pollination systems are not as specialist as many might think, and even in sexually-deceptive orchids that use pheromone mimics, many of their pollinators can get ‘confused’ and pollinate closely related orchid species.  Hence the existence of what are termed ‘natural hybrids’ such as the Missing Link Orchid and the interesting hybrid between the Fly Orchid and the Woodcock Orchid pictured below.

The hybrid, Fly x Woodcock  Orchid.  Photo Karen Woolley‏ @Wildwingsand

It looks like a belligerent penguin to me, but is of course pollinated by insects.

Often regarded as one of the most bizarrely flowered orchids is the Flying Duck Orchid, Caleana major from Australia.

Flying duck orchid Caleana major (from Australia) sawfly pollinated (Adams & Lawson, 1993).

I was intrigued to notice what appears to be a Cantharid beetle, species of which are known to pollinate other orchids (Schatz, 2006), lurking in the background. There are a number of Cantharids noted as being pollinators in Australia, some of which have been recorded pollinating orchids, although not specifically on Calaena (Armstrong, 1979) so this may be an overlooked pollinator, just waiting to be confirmed by a dedicated pollinator biologist or orchidologist.  There is also, if you wondered, a Small Duck Orchid, Paracaleana minor.

Who would have thought that reading a biography would have started me off on such an interesting paper hunt?  Perhaps the most interesting new bit of information I discovered was that male orchid bees although they attract females with scents, do not produce their own pheromones but collect flower volatiles which they mix with volatiles from other sources like fungi, plant sap and resins (Arriaga-Osnaya et al., 2017).  They use these ‘perfumes’ as part of their competitive courtship behaviour to attract females; the best perfumier wins the lady J

And then you have Dracula vampira….

Dracula vampira (Vampire orchid) – only found in Ecuador (Photo: Eric Hunt, licensed under CC by 3.0).© Eric Hunt.  I hasten to add this is not pollinated by vampires, bats or otherwise.


But to finish, here is the one that started it all…

The one that started it all, The Military Orchid, Orchis militaris  https://upload.wikimedia.org/wikipedia/commons/d/d4/Orchis_militaris_110503a.jpg



Many thanks to Manu Saunders over at Ecology is Not a Dirty Word for sending me a key reference and also to her and Jeff Ollerton for casting critical ‘pre-publication’ eyes over this post.


Armstrong, J.A. (1979) Biotic pollination mechanisms in the Australian flora — a review.  New Zealand Journal of Botany, 17, 467-508.

Adams, P.B. & Lawson, S.D. (1993) Pollination in Australian orchids: A critical assessment of the literature 1882-1992.  Australian Journal of Botany, 41, 553-575.

Arriaga-Osnaya, B.J., Contreras-Garduño, J., Espinosa-García, F.J. García-Rodríguez, Y.M.,  Moreno-García, M., Lanz-Mendoza, H., Godínez-Álvarez, H., & Cueva del Castillo, R. (2016) Are body size and volatile blends honest signals in orchid bees? Ecology & Evolution, 7, 3037–3045.

Dafni, A. (1984) Mimicry and deception in pollination.  Annual Review of Ecology & Systematics, 15, 259-278.

Döring, T.F., Skellern, M., Watts, N., & Cook, S.M. (2012) Colour choice behaviour in the pollen beetle Meligethes aeneus (Coleoptera: Nitulidae). Physiological Entomology, 37, 360-368.

Gaskett, A.C. (2011) Orchid pollination by sexual deception: pollinator perspectives. Biological Reviews, 86, 33-75.

Kullenberg, B. (1950) Investigations on the pollination of Ophrys species. Oikos, 2, 1-19.

Nilsson, L.A. (1978) Pollination ecology and adaptation in Platanthera chlorantha (Orchidaceae).  Botaniska Notiser, 131, 35-51.

Nilsson, L.A. (1983) Processes of isolation and introgressive interplay between Platanthera bifolia (L.) Rich and P. chlorantha (Custer) Reichb. (Orchidaceae). Botanical Journal of the Linnean Society, 87, 325-350.

Schatz, B. (2006)  Fine scale distribution of pollinator explains the occurrence of the natural orchid hybrid xOrchis bergoniiEcoscience, 13, 111-118.

Schiestl, F.P., Ayasse, M., Pauklus, H.F., Löfstedt, C., Hansson, B.S., Ibarra, F. & Francke, W. (2000) Sex pheromone mimicry in the eraly spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception.  Journal of Comparative Physiology A, 186, 567-574.

Steen, R. (2012) Pollination of Platanthera chlorantha (Orchidaceae): new video registration of a hawkmoth (Sphingidae). Nordic Journal of Botany, 30, 623-626.

Tollsten, L. & Bergström, J. (1989) variation and post-pollination changes in floral odours released by Platanthera chlorantha (Orchidaceae). Nordic Journal of Botany, 9, 359-362.

Tyteca, D., Rois, A.S. & Vereecken, N.J. (2006) Observations on the pollination of Oprys fuciflora by pseudo-copulation males of Phyllopertha horticola in northern France. Journal Europäischer Orchideen, 38, 203-214.

Vereecken, N.J., Streinzer, M., Ayasse, M., Spaethe, J., Paulus, H.F., Stökl, J., Cortis, P. & Schiestl, F.P. (2011) Integrating past and present studies on Ophrys pollination – a comment on Bradshaw et al. Botanical Journal of the Linnean Society, 165, 329-335.

Waser , N.M., Chittka, L., Price, M.V., Williams, N.M. & Ollerton, J. (1996) Generalization in pollination systems, and why it matters. Ecology, 77, 1043-1060.

Wolf, T. (1950) Pollination and fertilization of the Fly Ophrys, Ophrys Insectifera L. in Allindelille Fredskov, Denmark. Oikos, 2, 20-59.



Filed under EntoNotes, Science writing

Pick and mix 4 – more links to ponder

I found these interesting, perhaps some of you will?


Interesting post on urban re-wilding

From a couple of years ago, but if you ever wondered how Drosophila became a model organism then read this

How the noise natural gas extraction machines make can affect insect abundance

A nice easy to read post to help make non-entomologists realise the importance of insects and how abundant they are

The Backwinter – A lyrical account of a cold snap in London and its effect on insect and plant emergence by Emma Maund

A timely reminder that there is a lot of genetic material in the wild that can help our domesticated crops taste better

If you wondered what they really ate in the middle ages wonder no longer

An interesting read about an early collector of curiosities Ole Worm’s Cabinet of Wonder: Natural Specimens and Wondrous Monsters

If you are a fan of spring flowers this post from Alice Hunter is a must read/see

Ray Cannon on the tale of a tail 🙂



Filed under Pick and mix

Pick and mix 3 – another set of eclectic links

Another ten links to stuff I found intersting reading

After last week’s many Marches for Science, Timothy Caulfield on why we need “agenda free science

Check out these great images from Dynamic Ecology also celebrating March for Science

Did you know that some beekeepers not only name their Queens but keep a ‘family tree’; also some great photos

Some musings on what you can see if you stand still long enough from Loose and Leafy

An excellent summary from Terry McGlynn on writing good peer reviews

Interesting study from the USA showing that although fungicide residues made up more than 90% of the pesticides found in pollen insecticides posed the most risk

An interesting review paper on how the scent of predators is interpreted by their potential prey, sometimes fatally.  Warning for entomologists, many vertebrate examples given 🙂

For those interested in forest and woodland ecology – here is how to make a middle-aged wood into an ancient one

Amy Hahs on how to bring biodiversity back into cities

As someone who has had some papers rejected multiple times this joint post by Stephen Heard and Andrew Hendry on why multiple rejections are not a sign of poor quality made heartening reading



Filed under Pick and mix

Typos, typos everywhere – a call for the return of human copy editors and better proof reading

When I first started writing and publishing papers, publishers employed copy editors who checked pre-publication proofs for accuracy, style and grammar.  Authors had limited access to computer spell checkers, using print dictionaries instead and were supposed to check their proofs rigorously.   Nowadays, copy and style editors are mythical beasts, and we all suffer from the tyranny of the dreaded auto-correct.  The advent of automated copy editing and computerised spell checking has had a serious effect on the levels of exasperation in the Leather household. My wife, a former Editorial Assistant and copy editor*, and I find that we are increasingly drawing each other’s attention to glaring grammatical and typographical errors in the novels we read; baited breath when the author (I hope) meant bated, need instead of knead, dependent instead of dependant, principle instead of principal, effect when affect is meant and vice versa, etymology instead of entomology (oh heinous sin) and once to my total disbelief, dough instead of dhow!  And don’t even get me started on the greengrocer’s apostrophe!

It wouldn’t be so bad if this were confined to fiction but every now and increasingly then, I find something in a scientific paper or a grant proposal that makes me cringe and sigh despairingly (and not always quietly).

A high proportion of grant proposals and cvs that I see, use Principle Investigator instead of Principal Investigator.  I am happy that PIs are principled but just wish that they were a little bit more grammatically knowledgeable 🙂 That said, it is not just scientists who have a problem with the difference between principle and principal.

But, back to the reason I was stimulated to write this post.  I recently read a paper in Nature Communications, and was stunned by the appalling state of the references.  How these got past the copy editor (if there was one) and authors I have no idea.  Nature Communications is regarded as a high impact journal, in its own words publishing “high quality research” so one might expect and hope their production values to be equally high.

Author fatigue and Copy Editor failure!

 As a renowned senior scientist of my acquaintance (Professor Helmut van Emden if you wondered) once remarked during a PhD viva, “if you can’t be bothered to check your references for accuracy, how am I supposed to believe you collected your data and analysed it any more carefully?”  What particularly upset/disappointed me about the paper above was that two of the authors are former students of mine and have had the Van Emden adage related to them more than once!

To be fair, I too am not immune to letting the odd typo slip past my eagle eye.  Shortly after an editorial of mine was published (Leather, 2017) I received an email which I reproduce in full below.

Dear Prof. Leather

 I have just come across your recent editorial in Annals of Applied Biology.  Despite a few typographical errors (spelling of my name and a hanging reference to the “former” when the former is not clear), I could not agree more with your message, and I am honored that you chose my work on weed suppression as an example of the gap that needs to be closed.  Your description of the situation with respect to our research was right on target. I was also very impressed by the quotation from Benjamin Walsh, which is just as relevant today as it was back in 1866.

 The problem exists in both directions.  Basic researchers can be snobs who look down on applied research. But applied researchers often react to this by responding negatively to relevant basic research.  J.L. Harper often said that the distinction between basic and applied research is artificial, but there is clearly a cultural “gap”.

 With best wishes from Copenhagen

Jacob Weiner

On being reminded, very politely, that no matter how senior we are we are neither perfect nor infallible 🙂

The misspelled reference duly corrected, albeit after the fact.


Leather S.R. (2017) Mind the gap: time to make sure that scientists and practitioners are on the same page.  Annals of Applied Biology 170: 1-3

*Those of you whom had papers published in Ecological Entomology between 1996 and 2003 will have experienced her ferocious red pen 🙂



Filed under Bugbears

Pick and mix 2 – more eclectic links

Ten more links to peruse or not.

Not just British hedgehogs, but French hedgehogs are also on the decline

If you are a lover of Wisteria then this is definitely for you

A very thoughtful piece from Terry McGlynn on the ethical and moral stances that scientists take

Here is a report of a workshop run by an ex-PhD student of mine to discuss the future of farming insects for food in the UK

A really interesting paper describing how competition between two parasitic wasps can be influenced by the presence of an endosymbiont

Here is a paper of great relevance to farmers and policy makers but as usual has been published in a high impact journal that farmers and agronomists won’t read; as scientists we have to be more open to publishing in ‘lower scientific impact’ venues but that have a high impact in the real world

BioMed Central highlighting ways in which food crops might be protected against drought caused by climate change

According to Sir John Marsh the future of the countryside depends on economics

Chris Sandbrook asks what is meant by biodiversity in a conservation context

Like Manu Saunders I am a great believer in having others read my papers before submission, their chances of getting through the peer review process relatively unscathed are much improved

Leave a comment

Filed under Pick and mix

Small and frequently overlooked, but without them we could not exist

Without them, we would find the world a very different place, that is if we were still alive.  Yet very few people give them a thought, and then usually only to dismiss them or castigate them for impinging on our comfortable lives. Animals without backbones, the micro-flora and fauna, are what keep the world a place in which we can make a living.  Politicians however, and many others of our fellow travellers on this fragile planet, seem unaware of their importance.  Donald Trump rescinds environmental protection laws as if they are a hindrance to humankind rather than a boon, BREXIT politicians and their supporters in the UK extol the virtues of escaping from those silly EU environmental laws that prevent them from polluting our beaches and rivers and making our air unbreathable. We all need to take a step back and adjust our vision so that we can appreciate the little things that run the world and understand that despite our size, our abundance and our apparent dominance, that we too are a part of nature.

I and many others have written about this topic on many occasions but it is a message that bears repetition again and again.  I leave you with the passage that stimulated my latest rant and a few links to similar pieces.

“In terms of size, mammals are an anomaly, as the vast majority of the world’s existing animal species are snail-sized or smaller.  It’s almost as if, regardless of your kingdom, the smaller your size and the earlier your place on the tree of life, the more critical is your niche on Earth; snails and worms create soil, and blue-green algae create oxygen; mammals seem comparatively dispensable; the result of the random path of evolution over a luxurious amount of time.”

Elizabeth Tova Bailey  (2010)  – The Sound of a Wild Snail Eating

Here are a few links to give you food for thought and to inspire you to find more of the same.

Michael Samways  Small animals rule the world. We need to stop destroying them

E O Wilson (1987) The little things that rule the world

Gregory Mueller & John Schmidt (2007) on why we should know more about fungi

Robert May (2009) Ecological science and tomorrow’s world

Mark Gessner and colleagues (2010) on the importance of decomposers

Anders Dahlberg and colleagues (2010) on why we should conserve fungi

Anne Maczulak (2010) on the importance of bacteria

Me complaining about plastic and other environmental dangers

Me again, this time about conserving small things

Sorry, but me again, this time about appreciating nature

and from Gerald Durrell, who was a great inspiration to me through his various writings…

And finally, If you haven’t read this, then I can certainly recommend it:

Ehrlich, P.  & Ehrlich, A. (1981) Extinction, Random House, New York.



Filed under Bugbears

Pick and mix – eclectic links to stuff that caught my interest last week

Hopefully some of these links may be of interest to some of you.


Scientists, admittedly probably not all, can appreciate and enjoy poetry, as Stephen Heard points out here

On the Death’s Head Hawkmoth as a honey thief

For those of you who like France, bees and might be considering becoming beekeepers

On the value of native trees and shrubs for wildlife

On a similar vein, here is a paper about the value of native trees for insectivorous birds

More evidence of the importance of biodiversity for ecosystem functioning

The Journal of Biogeography celebrates the 50th anniversary of the publication of The Theory of Island biogeography by posing fifty fundamental questions that might take the discipline further forward

Another one from one of my favourite French sites, this time on the beauties of mosses and lichens

A French farmer asks for help from politicians using an ingenious message board

Over on Dynamic Ecology Jeremy Fox asks if you can think of any successful ecological models based on loose physical analogies?

And finally, announcing the launch of Pantheon, the tool to help you analyse your invertebrate species samples



Filed under Pick and mix