Tag Archives: Acyrthosiphon pisum

Aphids galore, les pucerons à gogo – UK-France Joint Meeting on Aphids – April 3rd to 5th 2019

The giant aphid – a fitting start to an aphid conference, albeit taxonomically suspect 😊

I have just returned from a very enjoyable two-day meeting at Rothamsted Research Station in Harpenden.  This was a follow-up to the very enjoyable meeting we had in Paris in 2015 which made me ask somewhat facetiously, if pea aphids ruled the world 😊 As with the Paris meeting, this recent meeting was jointly organised by Jean-Christophe Simon and Richard Harrington with some input by me.  There were ninety delegates, and not just from France and the UK; we had a keynote speaker from Japan, Tsutomu Tsuchida, and also speakers from Belgium, the Czech Republic, Germany, Ireland and Switzerland.

Tsumato Tsuchida, me, Richard Harrington, Julie Jaquiéry, Jean-Christophe Simon and Richard Blackman.

Our other three keynote speakers included two of the doyens of the aphid world, Roger Blackman and Helmut van Emden   and Julie Jaquiéry from the University of Rennes.  As with the Paris meeting, many of the talks were about the pea aphid and symbionts.  Other aphids did, however, get mentioned, including my favourite aphid, Rhopaloisphum padi, which featured in an excellent talk by PhD student Amma Simon from Rothamsted, who is supervised by one of my former students, Gia Aradottir.  There was an excellent poster session, a tribute to the late great, Ole Heie from Mariusz Kanturski, a fabulous film by Urs Wyss, which included shocking scenes of lime aphids being torn apart by vicious predators, and of course the conference dinner.

It would take too long to describe all the talks, so I will let the pictures tell the story of a very enjoyable meeting.  Hopefully we will all meet again in France in 2023.

Great talks and a packed lecture theatre

Food and chat

Very animated poster sessions

Three senior aphidologists in action,  Helmut Van Emden, Hugh Loxdale and Roger Blackman

Richard Harrington presenting Roger Blackman and ‘Van’ van Emden with the Award of the Golden Aphid – the lighting in the conference dining area was very peculiar 😊

Strange lighting at the conference dinner

From the Urs Wyss film– lime aphid moulting

The giant aphid having a quick snack

And in case you wondered, there were embryos inside the giant aphid 🙂

Many thanks to the Royal Entomological Society and BAPOA/INRA for funding.

And here are most of the delegates on the final day

Aphid SIG 2019

Advertisements

Leave a comment

Filed under Aphidology, Aphids

Entomological classics – Aphids spit: visualising aphids feeding, the electrical penetration graph

Aphids as a taxonomic group, have been recognised since at least 1758 when Linnaeus coined the genus Aphis and have been cited as important pests for more than 200 years “The Aphis or Blighter, as we now for the first time venture to call it, from its being the most general cause of what are termed blights in plants..” (Curtis, 1802).  A detailed understanding of how they fed, was however, longer in being reached, but by 1914 the anatomy of the aphid mouthparts and the process of stylet insertion was fully described (Davidson, 1914).  Davidson (1923) also described the role that aphid saliva plays in helping the aphid feed by making it easier for the stylet to move between cells on its convoluted journey to the phloem, made visible as the so-called stylet tracks.

Drawings showing the effects produced by the passage of aphid stylets of three different aphid species through leaf tissue (Davidson, 1923).

Fast forward a couple of years and we have intrepid entomologists producing photographic evidence of aphid stylets in action (Smith, 1926).

Photomicrographs of the stylet of Myzus persicae in situ and the resultant stylet track (Smith, 1926).

One of the reasons that applied entomologists were so interested in aphid feeding was the role that aphids, and other insects, played as vectors of plant viruses, which until the 1920s, was not formally proven (e.g. Kunkel, 1926, Smith, 1926, 1929). You would be forgiven for thinking that once the connection between aphid feeding and plant virus transmission had been demonstrated then that would be it.  But no, much wants more, and aphidologists became intrigued about the link between aphid feeding and salivation, in particular when and exactly where these activities occurred in the plant.  Those entomologists working on plant viruses wanted to know which part of the feeding process was linked to the acquisition and inoculation of the viruses from and to the aphid host plant.  A possible solution to these conundrums, was, however, on the horizon.

In the early 1960s, two entomologists from the Department of Entomology, at the University of California, Davis, Donald McLean and Marvin Kinsey,  came up with a system that was to revolutionise the study of the feeding behaviour of aphids and other insects that feed internally on plant using piercing mouthparts (McLean & Kinsey, 1964). In essence, what they did was to make an aphid part of an electrical circuit by attaching a thin copper wire to its back using a quick-drying silver paint.  The feeding substrate, a leaf, had a 2.0 Volt, 60-cycle alternating current introduced to it and this was placed on an insulated grid connected to an amplifier connected in parallel with an oscilloscope, a chart-recorder and a speaker. The wire attached to the aphid, was joined to the grid and when the aphid began to feed this completed the circuit, and changes in voltage were able to be observed and recorded.  The next step was to identify which chart recordings were associated with sap ingestion and salivation by the aphid.  Using an artificial leaf, Parafilm stretched over a well containing a sucrose solution, and watching the aphids under a high power microscope, these innovative entomologists were able to identify four different stages involved in aphid feeding (Mclean & Kinsey, 1965).

The ground-breaking chart recording (Mclean & Kinsey, 1965) and as you might expect it was a pea aphid 🙂

 

A visual summary of what McLean and Kinsey were watching and recording (from Dixon (1973).

Not satisfied with these findings McLean and Kinsey modified their equipment and intensified their observations, sacrificing a number of aphids in the process.  When different waveforms were seen the poor aphids had their stylets amputated and the plant material with the stylet still in place was then examined under a high power microscope.  This meant that they were able to definitively correlate their recordings with the position of the stylet in different leaf tissues and during different behaviours (McLean & Kinsey, 1967).  As well as trying to understand how, when and where plant viruses were acquired or transmitted, it turns out that using the waveforms generated by the aphid mouthparts as they weave their way through the leaf tissues, is not only a useful way of assessing the resistance mechanism of a plant (e.g. Nielson & Don, 1974; Paul et al., 1996; ten Broeke et al., 2016) but also for detecting resistance to insecticides (e.g. Garzo et al., 2016).

Modifications to the original equipment happened very quickly; by 1966, a more compact and easier to use version using Direct Current had been developed (Schaefers, 1966). That said, the first correlation of a specific waveform and virus acquisition by the pea aphid, was shown using the original AC equipment (Hodges & Mclean, 1969).  A further modification of the Schaefers DC equipment was developed during the 1970s, such that test aphids were able to live and reproduce for up to ten days whilst attached to the set-up, thus allowing very detailed investigation of the correlations between the electrical signal patterns produced and the feeding behaviours of the aphids (Tjallingii, 1978).

Those of you who take note of such things, will have noticed, that so far, some 14-years after its invention, the term electrical penetration graph has not yet appeared, either here or in the scientific literature.   Earlier references to recordings using the technique use the term actograph which was somewhat non-specific, as it refers to any graphical representation of behavioural activity.  So when did the term Electrical Penetration Graph (EPG) first appear in the literature.  Google Scholar gave me a date of 1984 from a paper looking at the resistance of lettuce to the cabbage aphid Brevicoryne brassicae, a paper that includes Freddy Tjallingii in the authorship list (Mentink et al., 1984).  In this paper the authors refer to a conference proceedings paper (Tjallingii, 1982) as being the source of the name.  On tracking down that paper I found that it doesn’t actually mention the term EPG.  The first paper that specifically mentions and defines the term as “the recorded graph as a result of an overall electrical signal caused by stylet penetration activities” is Tjallingii (1985).  Strangely the author introduces the term thus “Here we introduce the term ‘electrical penetration graph (EPG)”, which I found slightly odd as it is a single author paper 😊  Inputting EPG or electrical penetration graph into Web of Science shows an increasing number of papers using and mentioning the technique, but surprisingly the first paper recorded is from 1999.

NGram finds the first mention slightly earlier, 1981.  A puzzle waiting to be solved for anyone with the time or inlcination.

The frequency of the occurrence of the phrase “Electrical penetration graph” according to Ngram Viewer (accessed and downloaded May 1st 2018).

The technique is now very well established and used around the world.  The equipment is commercially available through EPG Systems, which is where we got ours from and just in case you were wondering, this is what it looks like.

Faraday Cage (an earthed metal screen) surrounding the equipment to exclude electrostatic and electromagnetic influences

Our test plants in situ connected up to the electrical supply, recording equipment and amplifier.

Close up of the plants and EPG electrodes

Aphids connected up to the EPG. Photo courtesy of https://sites.google.com/site/ezwear1/epgIMG_0903.jpg

A simple guide to interpreting the waveforms

http://www.epgsystems.eu/file/46-waveform-features

For Open Days and public displays it is not unknown for mischievous entomologists to link particular waveforms to recordings of sucking and spitting sounds and to play these back when the equipment is being demonstrated 🙂

 

References

Curtis, W.L. (1802) IV. Observations on aphides, chiefly intended to show that they are the principal cause of blights in plants, and the sole cause of the honeydewTransactions of the Linnaean Society of London, 6, 75-94.

Davidson, J. (1914) On the mouth-parts and mechanism of suction in Schizoneura lanigera, Hausmann. Zoological Journal of the Linnaean Society, 32, 307-330.

Davidson, J. (1923) Biological studies of Aphis rumicis Linn. The penetration of plant tissues and the source of the food supply of aphids.  Annals of Applied Biology, 15, 35-54.

Gabrys, B., Tjallingii, W.F. & van Beek, T.A. (1997) Analysis of EPG recorded probing by cabbage aphid on host plant parts with different glucosinolate contents. Journal of Chemical Ecology, 23, 1661-1673.

Garzo, E., Moreno, A., Hernando, S., Marino, V., Torne, M., Santamaria, E., Diaz, I. & Fereres, A. (2016) Electrical penetration graph technique as a tool to monitor the early stages of aphid resistance to insecticides. Pest Management Science, 72, 707-718.

Hodges, L.R. & McLean, D.L. (1969) Correlation of transmission of Bean Yellow Mosaic Virus with salivation activity of Acyrthosiphon pisum (Homoptera: Aphididae). Annals of the Entomological Society of America, 62, 1398-1401.

Kunkel, L.O. (1926) Studies on Aster Yellows. American Journal of Botany, 13, 646-705.

McLean, D.L. & Kinsey, M.G. (1964) A technique for electronically recording aphid feeding and salivation. Nature, 202, 1358-1359.

McLean, D.L. & Kinsey, M.G. (1965) Identification of electrically recorded curve patterns associated with aphid salivation and ingestion. Nature, 205, 1130-1131.

McLean, D.L. & Kinsey, M.G. (1967) Probing behavior of the pea aphid, Acyrthosiphon pisum. I. Definitive correlation of electronically recorded waveforms with aphid probing activitiesAnnals of the Entomological Society of America, 60, 400-405.

Mentink, P.J.M., Kimmins, F.M., Harrewijn , P., Dieleman, F.L., Tjallingii, W.F.,  van Rheenen, B. &  Eenink, A.H. (1984)  Electrical penetration graphs combined with stylet cutting in the study of host plant resistance to aphids. Entomologia experimentalis et applicata, 35, 210-213.

Nielson, M.W. & Don, H. (1974) Probing behaviour of biotypes of the spotted alfalfa aphid on resistant and susceptible and alfalfa clones.  Entomologia experimentalis et applicata, 17, 477-486.

Paul, T.A., Darby, P., Green, C.P., Hodgson, C.J. & Rossiter, J.T. (1996) Electrical penetration graphs of the damson-hop aphid, Phorodon humuli on resistant and susceptible hops (Humulus lupulus).  Entomologia expeimentalis et applicata, 80, 335-342.

Powell, G. (1991) Cell membrane punctures during epidermal penetrations by aphids: consequences for the transmission of two potyviruses. Annals of applied Biology, 119, 313-321.

Schaefers, G.A. (1966) The use of direct current for electronically recording aphid feeding and salivation. Annals of the Entomological Society of America, 59, 1022-1024.

ten Broeke, C.J.M., Dicke, M. & van Loon, J.J.A. (2016) Feeding behaviour and performance of Nasonovia ribisnigri on grafts, detached leaves, and leaf disks of resistant and susceptible lettuce.  Entomologia experimentalis et applicata, 159, 102-111.

Tjallingii, W.F. (1978) Electronic recording of penetration behaviour by aphids. Entomologia experimentalis et applicata, 24, 521-530.

Tjallingii, W.F. (1982) Electrical recording of aphid penetration. [In] J.H. Visser & A.K. Minks (eds.) Proceedings of the 5th Symposium on Insect Plant-Relationships, 1-4 March, 1982, Wageningen, Pudoc, pp 409-410.

Tjallingii, W.F. (1985) Electrical nature of recorded signals during stylet penetration by aphids. Entomologia experimentalis et applicata, 38, 177-185.

Smith, K.M. (1926) A comparative study of the feeding methods of certain Hemiptera and of the resulting effects upon the plant tissue, with special reference to the potato plant. Annals of Applied Biology, 13, 109-139.

Smith, K.M. (1929) Studies on potato virus diseases, V. Insect transmission of potato leaf roll.  Annals of Applied Biology, 16, 209-229

 

Leave a comment

Filed under Aphids, Entomological classics

Not all aphids have the same internal biomes

Headline message for those of you too busy to read the whole thing

Aphids have mutualistic symbiotic bacteria living inside them, one set, the primary endosymbionts, Buchnera aphidicola are obligate, i.e. in normal circumstances, the aphid can’t live without them and vice versa. All aphids have them. The others, the secondary symbionts, of which there are, at the last count, more than seven different species, are facultative, i.e. aphids can survive without them and not all aphids have them or the same combination of them. These can help the aphid in many ways, such as, making them more resistant to parasitic wasps, able to survive heat stress better and helping them use their host plants more efficiently. Hosting the secondary symbionts may, however, impose costs on the aphids.

Now read on, or if you have had enough of the story get back to work  🙂

Like us, aphids have a thriving internal ecology, they are inhabited by a number of bacteria or bacteria like organisms. The existence of these fellow travellers and the fact that they are transmitted transovarially, has been known for over a hundred years (Huxley, 1858; Peklo, 1912)*, although their role within the body of the aphids was not entirely understood for some time, despite Peklo’s conviction that they were symbionts and transferred via the eggs to the next generation. Some years later the Hungarian entomologist László Tóth** hypothesised that aphids because the plant sap that they feed on did not contain enough proteins to meet their demands for growth, must be obtaining the extra nitrogen they needed from their symbionts, although he was unable to prove this empirically (Tóth, 1940). This was very firmly disputed by Tom Mittler some years later, who using the giant willow aphid, Tuberolachnus salignus, showed that aphid honeydew and willow phloem sap contained the same amino acids (Mittler, 1953, 1958ab). It was not only aphidologists who were arguing about the nature and role of insect symbionts, as this extract from a review of the time makes clear,

It is not our purpose here to harangue on terminology; suffice it to say that we will use “symbiote” for the microorganism and “host” for the larger organism (insect) involved in a mutualistic or seemingly mutualistic association.” (Richards & Brooks, 1958).

Interestingly it is in this paper that they mention, using the term “provocactive” the use of antibiotics to create aposymbiotic individuals in attempts to prove that the symbionts were first bacteria, and second, benefiting their insect hosts. The concluded that there was enough evidence to suggest that the endosymbionts were involved in some way in the nutritional and possibly reproductive processes of the insects studied, mainly cockroaches. At the time of the review no similar work had been done on aphids. A few years later though, two American entomologists sprayed aphids with several different antibiotics and found that this caused increased mortality and reduced fecundity when compared with untreated ones (Harries & Mattson, 1963). Presaging its future dominance in aphid symbiont work, one of the aphids was the pea aphid, Acyrthosiphon pisum. Antibiotics were also shown to eliminate and damage the symbionts associated with Aphis fabae followed by impaired development and fecundity in the aphid itself adding yet more evidence that the symbionts were an essential part of the aphid biome (Ehrhardt & Schmutterer, 1966). There was, however, still much debate as to how the symbionts provided proteins to the aphids, and although light and electron microscopy studies confirmed that the symbionts were definitely micro-organisms (Lamb & Hinde, 1967; Hinde, 1971), the answer to that question was to remain unanswered until the 1980s although the development of aphid artificial diets (Dadd & Krieger, 1967) which could be used in conjunction with antibiotic treatments, meant that it was possible to show that the symbionts provided the aphids with essential amino acids (Dadd & Kreiger, 1968; Mittler, 1971ab).*** Although the existence of secondary symbionts in other Homoptera was known (Buchner, 1965), it was not until Rosalind Hinde described them from the rose aphid, Macrosiphum rosae, that their presence in aphids was confirmed (Hinde, 1971).   Of course it was inevitable that they would then be discovered in the pea aphid although their role was unknown (Grifiths & Beck, 1973). Shortly afterwards they were able to show that material produced from the symbionts was passed into the body of the aphid (Griffiths & Beck, 1975) and it was also suggested suggested that it was possible that the primary symbionts were able to synthesise amino acids (Srivastava & Auclair, 1975) and sterols (Houk et al., 1976) for the benefit of their aphid hosts (partners). By the early 1980s it was accepted dogma that aphids were unable to reproduce or survive without their primary symbionts (Houk & Griffiths, 1980; Ishikawa, 1982) and by the late 1980s that dietary sterols were provided by the primary symbionts (Douglas, 1988).

Symbionts

Primary symbiont (P) in process of dividing seen next to secondary symbionts (S) and mitochondrion (m) from Houk & Griffiths (1980).

Despite the huge amount of research and the general acceptance that the endosymbionts were an integral part of the aphid’s biome “The mycetocyte symbionts are transmitted directly from one insect generation to the next through the female. There are no known cases of insects that acquire mycetocyte symbionts from the environment or from insects other than their parents” (Douglas , 1989), their putative identity was not determined until 1991 (Munson et al., 1991), when they were named Buchnera aphidicola, and incidentally placed in a brand new genus. Note however, that like some aphids, B. aphidicola represents a complex of closely related bacteria and not a single species (Moran & Baumann, 1994). Research on the role of the primary symbionts now picked up pace and it was soon confirmed that they were responsible for the synthesis of essential amino acids used by the aphids, such as tryptophan (Sasaki et al., 1991; Douglas & Prosser, 1992) and that it was definitely an obligate relationship on both sides**** (Moran & Baumann, 1994).

Now that the mystery of the obligate primary endosymbionts was ‘solved’, attention turned to the presumably facultative secondary symbionts, first noticed more than twenty years earlier (Hinde, 1971)***** began to be scrutinised in earnest. Nancy Moran and colleagues (Moran et al., 2005) identified three ‘species’ of secondary bacterial symbionts, Serratia symbiotica, Hamiltonella defensa and Regiella insecticola. As these are not found in all individuals of a species they are facultative rather than obligate. The secondary symbionts were soon shown not to have nutritional benefits for the aphids (Douglas et al., 2006). They are instead linked to a whole swathe of aphid life history attributes, ranging from resistance to parasitoids (Oliver et al., 2003; 2005; Schmid et al., 2012), resistance to heat and other abiotic stressors (Montllor et al., 2002; Russell & Moran 2006; Enders & Miller, 2016) and to host plant use (Tsuchida et al., 2004; McLean et al., 2011; Zytynska et al., 2016).

And finally, Mittler (1971b) mentions the reddish colouration developed by aphids reared on some of the antibiotic diets and hypothesises that this may be linked to the symbionts. I have written earlier about aphid colour variants and the possibility that the symbionts may have something to do with it. The grain aphid, Sitobion avenae has a number of colour variants and it was suggested that levels of carotenoids present might have something to do with the colours expressed and that in some way this was controlled by the presence of absence of symbionts (Jenkins et al., 1999). More recently Tsuchida and colleagues in a series of elegant experiments on the ubiquitous pea aphid, have shown that the intensity of green colouration is dependent on the presence of yet another endosymbiont, a Rickettsiella (Tsuchida et al., 2010). The authors hypothesise that being green

Pea aphids colour

Elegant demonstration that in some strains of the pea aphid, green colour is a sign of an infection by Rickettsiella (Tsuchida et al., 2010).

rather than pink or red, may reduce predation by ladybirds as has been suggested before (Losey et al., 1997).

New secondary symbionts continue to be discovered and with each discovery, new hypotheses are raised and tested. It would seem that there is a whole ecology of secondary symbionts within the aphid biome waiting to be explored and written about (Zytynska & Weisser, 2016). What are you waiting for, but do remember to come up for air sometime and relate what you find back to the ecology of the aphids 🙂

 

References

Buchner, P. (1965) Endosymbiosis of Animals with Plant Microorganisms. Interscience, New York.

Dadd, R.H. & Krieger, D.L. (1967) Continuous rearing of aphids of the Aphis fabae complex on sterile synthetic diet. Journal of Economic Entomology, 60, 1512-1514.

Dadd, R.H. & Krieger, D.L. (1968) Dietary amino acid requirements of the aphid Myzus persicae. Journal of Insect Physiology, 14, 741-764.

Douglas, A.E. (1988) On the source of sterols in the green peach aphid, Myzus persicae, reared on holidic diets. Journal of Insect Physiology, 34, 403-408.

Douglas, A.E. (1998) Mycetocyte symbiosis in insects. Biological Reviews, 64, 409-434.

Douglas, A.E. & Prosser, W.A. (1992) Sythesis of the essential amiono acid trypthotan in the pea aphid (Acyrthosiphon pisum) symbiosis. Journal of Insect Physiology, 38, 565-568.

Douglas, A.E., Francois, C.M.L.J. & Minto, L.B. (2006) Facultative ‘secondary’ bacterial symbionts and the nutrition of the pea aphid, Acyrthosiphon pisum. Physiological Entomology, 31, 262-269.

Ehrhardt, P. & Schmutterer, H. (1966) Die Wirkung Verschiedener Antibiotica auf Entwicklung und Symbionten Künstlich Ernährter Bohnenblattläuse (Aphis fabae Scop.). Zeitschrift für Morphologie und Ökologie der Tiere, 56, 1-20.

Enders, L.S. & Miller, N.J. (2016)Stress-induced changes in abundance differ among obligate and facultative endosymbionts of the soybean aphid. Ecology & Evolution, 6, 818-829.

Griffiths, G.W. & Beck, S.D. (1973) Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 19, 75-84.

Griffiths, G.W. & Beck, S.D. (1975) Ultrastructure of pea aphid mycetocystes: evidence for symbiote secretion. Cell & Tissue Research, 159, 351-367.

Harries, F.H. & Mattson, V.J. (1963) Effects of some antibiotics on three aphid species. Journal of Economic Entomology, 56, 412-414.

Hinde, R. (1971) The control of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae. Journal of Insect Physiology, 17, 1791-1800.

Houk, E.J. & Griffiths, G.W. (1980) Intracellular symbiotes of the Homoptera. Annual Review of Entomology, 25, 161-187.

Houk, E.J., Griffiths, G.W. & Beck, S.D. (1976) Lipid metabolism in the symbiotes of the pea aphid, Acyrthosiphon pisum. Comparative Biochemistry & Physiology, 54B, 427-431.

Huxley, T.H. (1858) On the agamic reproduction and morphology of Aphis – Part I. Transactions of the Linnean Society of London, 22, 193-219.

Ishikawa, H. (1978) Intracellular symbionts as a major source of the ribosomal RNAs in the aphid mycetocytes. Biochemical & Biophysical Research Communications, 81, 993-999.

Ishikawa, H. (1982) Isolation of the intracellular symbionts and partial characterizations of their RNA species of the elder aphid, Acyrthosiphon magnoliae. Comparative Biochemistry & Physiology, 72B, 239-247.

Jenkins,  R.L., Loxdale, H.D., Brookes, C.P. & Dixon, A.F.G. (1999)  The major carotenoid pigments of the grain aphid Sitobion avenae (F.) (Hemiptera: Aphididae).  Physiological Entomology, 24, 171-178. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3032.1999.00128.x/pdf

Lamb, R.J. & Hinde, R. (1967) Structure and development of the mycetome in the cabbage aphid, Brevicoryne brassciae. Journal of invertebrate Pathology, 9, 3-11.

Losey, J. E., Ives, A. R., Harmon, J., Ballantyne, F. &Brown, C. (1997). A polymorphism maintained by opposite patterns of parasitism and predation. Nature, 388, 269-272.

McLean, A.H.C., van Asch, M., Ferrari, J. & Godfray, H.C.J. (2011) Effects of bacterial secondary symbionts on host plant use in pea aphids. Proceedings of the Royal Society B., 278, 760-766.

Mittler, T.E. (1953) Amino-acids in phloem sap and their excretion by aphids. Nature, 172, 207.

Mittler, T.E. (1958a) Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. Journal of Experimental Biology, 35, 74-84.

Mittler, T.E. (1958b) Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). III The nitrogen economy. Journal of Experimental Biology, 35, 626-638.

Mittler, T.E. (1971a) Dietary amino acid requirements of the aphid Myzus persicae affected by antibiotic uptake. Journal of Nutrition, 101, 1023-1028.

Mittler, T.E. (1971b) Some effects on the aphid Myzus persicae of ingesting antibiotics incorporated into artificial diets. Journal of Insect Physiology, 17, 1333-1347.

Montllor, C.B., Maxmen, A. & Purcell, A.H. (2002) Facultative bacterial endosymbionts benefit pea pahids Acyrthosiphon pisum under heat stress. Ecological Entomology, 27, 189-195.

Moran, N. & Baumann, P. (1994) Phylogenetics of cytoplasmically inherited microrganisms of arthropods. Trends in Ecology & Evolution, 9, 15-20.

Moran, N.A., Russell, J.A., Koga, R. & Fukatsu, T. (2005) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Applied & Environmental Microbiology, 71, 3302-3310.

Munson, M.A., Baumann, P. & Kinsey, M.G. (1991) Buchnera gen. nov. and Buchnera aphidicola sp. Nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. International Journal of Systematic Bacteriology, 41, 566-568.

Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences USA, 100, 1803-1807.

Oliver, K.M., Moran, N.A. & Hunter, M.S. (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences USA, 102, 12795-12800.

Peklo, J (1912) Über symbiotische Bakterien der Aphiden. Berichte der Deutschen Botanischen Gesellschaft, 30, 416-419.

Richards, A.G. & Brooks, M.A. (1958) Internal symbiosis in insects. Annual Review of Entomology, 3, 37-56.

Russell, J.A. & Moran, N.A. (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proceedings of the Royal Society B, 273, 603-610.

Sasaki, T., Hayashi, H. & Ishikawa, H. (1991) Growth and reproduction of the symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisum mainatained on artificial diets. Journal of Insect Physiology, 37, 749-756.

Schmid, M., Sieber, R., Zimmermann, Y.S. & Vorburger, C. (2012) Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Functional Ecology, 26, 207-215.

Srivastava P.N. & Auclair, J.L. (1975) Role of single amino acids in phagostimualtion, growth, and survival of Acyrthosiphon pisum. Journal of Insect Physiology, 21, 1865-1871.

Tóth, L. (1940) The protein metabolism of aphids. Annales Musei Nationalis Hungarici 33, 167-171.

Tsuchida, T., Koga, R. & Fukatsu, T. (2004) Host plant specialization governed by facultative symbiont. Science, 303, 1989.

Tsuchida, T., Koga, R., Horikawa, M., Tsunoda, T., Maoka, T., Matsumoto, S., Simon, J. C. &Fukatsu, T. (2010). Symbiotic bacterium modifies aphid body color. Science 330: 1102-1104.

Zytynska, S. E. &Weisser, W. W. (2016). The natural occurrence of secondary bacterial symbionts in aphids. Ecological Entomology, 41, 13-26.

Zytynska, S.E., Meyer, S.T., Sturm, S., Ullmann, W., Mehrparvar, M. & Weisser, W.W. (2016) Secondary bacterial symbiont community in aphids responds to plant diversity. Oecologia, 180, 735-747.

 

Footnotes

*I should point out that although Huxley clearly described the structure and contents of the mycetocytes he had absolutely no idea what they were and what function, if any, they had. Despite the many authors who supported Peklo’s claim that the contents of the mycetocytes were bacteria he was still having to defend himself against detractors more than 50 years later (Peklo, 1953).

Peklo, J. (1953) Microorganisms or mitochondria? Science, 118, 202-206.

 

**not to be confused with the László Tóth who vandalised Michelangelo’s Pietà

***interestingly, although the existence of primary symbionts in aphids and their possible role in aphid nutrition was by then firmly established, my vade mecum as a student, Tony Dixon’s Biology of Aphids, makes no mention of them at all, although first published in 1973. The first edition of Aphid Ecology (1985) also by Tony Dixon, only devotes three quarters of a page to them, but by the second edition, published in 1998, they get a whole chapter to themselves.

Buchnera appears to have been ‘lost’ but replaced by a yeast like symbiont (Braendle et al., (2003).

Braendle, C., Miura, T., Bickel, R., Shingleton, A.W., Kambhampari, S. & Stern, D.L. (2003) Developmental origin and evolution of bacteriocytes in the aphid-Buchnera symbiosis. PloS Biology, 1, e21. doi:10.1371/journal.pbio.0000021.

 

*****although Huxley’s description of the unknown structures that he saw in aphids in 1858, does seem to include secondary symbionts as well as the primary ones.

Glossary

3 Comments

Filed under Aphidology, Aphids

Do pea aphids rule the world? Joint UK-French Aphid Meeting Paris

Last week (5th to 6th November 2015) I had the great privilege and pleasure to attend an aphid conference in Paris – my favourite insects and my favourite city – heaven!  The conference was mainly organised by our French colleagues from INRA, under the direction of Jean-Christophe Simon with help from Richard Harrington, recently retired from Rothamsted Research, and a tiny bit of input from me.

The meeting was held at the Societe Nationale D’Horticulture De France, a building cunningly hidden away down a long passageway off the Rue de Grenelle which debuts into a small courtyard where I found the main entrance and was reassured by the sight of the

Venue

organisers feverishly getting name tags ready (I was very early as had thought it would take longer to walk there than it actually did) and

Notice

a suitably amusingly appropriate sign on the door.

I was greeted enthusiastically by Jean-Christophe, caused a bit of a hiatus by having to have my name badge located and was then pointed gently, but firmly at the coffee 🙂

The rest of the delegates began to arrive some twenty minutes later or so and shortly after we were ushered into the lecture theatre, which was very full.

Lecture

After getting over the shock of being told that there was no Wifi available (that put paid to my plans for Tweeting), I settled down to enjoy the morning. The conference began with an invited presentation from Takema Fukatsu from Japan who gave us an overview on symbiosis, evolution and biodiversity.   This was then followed by two shorter talks of 12.5 minutes each leading us into the first coffee break.  One of the great things about this conference was, that apart from the plenary presentation, all talks were restricted to 10 minutes with 2.5 minutes for questions.  This meant that we got to hear 40 (yes forty) talks over the two days and that we had refreshment breaks every 75 minutes, (the coffee was excellent).  The refreshment breaks were half an hour long, and lunch was an hour, thus giving delegates plenty of time to mix and chat about their work.

There were just over a 100 delegates coming from eight different countries, although as one might expect, most were from France and the UK. It was great to see so many people working on aphids, although not all could be described as “aphidologists” sensu stricto, but I am sure that everyone there would be happy to be included under that description as sensu lato 🙂 Sadly in the UK the number of aphidologists has declined greatly since I was a student, especially those working on their ecology and morphotaxonomy.

The focus of the talks and posters, of which there were 21, was predominantly on the interactions of aphids with their host plants and natural enemies. The role of symbionts in these interactions and the molecular mechanisms involved was especially highlighted, in particular those involved with the pea aphid, Acyrthosiphon pisum.  Aproximately 40% of the talks were on the pea aphid, and a further 28% on the most pestiferous aphid in the world, Myzus persicae and its ability to develop resistance to pesticides.  Although I find aphid symbionts fascinating, I am a bit concerned that they and the pea aphid seem to be taking over the world!  Given the number of talks, I am not going to review them all.   For those interested the full programme and abstracts can be found here.  Highlights for me were Christoph Vorburger from ETH who gave an entertaining talk about the effect that endosymbionts have in protecting aphids against parasitoids, and making me feel old, Ailsa McLean from Oxford University, whom I first met when she was in her pram (she is the daughter of Ian Mclean with whom I shared a lab when we were PhD students).  I was also very pleased to be chairing the session in which Charles Dedryver (now retired) was speaking about the history of aphidology.  I was less happy that I had to cut his talk short, but my duties left me no other choice 🙂  Despite Charles and I exchanging reprints for almost 40 years, this was the first time that we had ever come face to face.

All in all a fantastic conference and many congratulations to the team from INRA for organising it so well. My one concern, which I touched upon earlier was the predominance of the pea aphid as a model organism and the overriding focus on the molecular aspects of the various interactions.  I find it a little worrying that I can find statements in papers such as “This is an exciting time for pea aphid biologists”  (Brisson, 2010), which hardly indicates a broad viewpoint. As a further indication of an overly narrow focus, during the breaks it was noticeable that of the people who ventured outside, I was the only one turning leaves over and looking for aphids, the others were indulging their nicotine habits.

Aphids

It is important that as aphidologists, entomologists and ecologists we do not lose sight of the big picture.

 

Reference

Brisson, J.A. (2010) Aphid wing dimorphisms: linking environmental and genetic control of trait variation. Philosophical Transactions of the Royal Society B, 365, 60-616

 

Sensu stricto in the narrow sense; Sensu lato broadly speaking

 

A non-entomological post script

The added bonus of having the conference in Paris was that my wife had an excuse to pop over for the weekend and I was able to extend my visit. The weather was fantastic and we had a great time eating, drinking and seeing as many sights as we could fit in.  Luckily the weather was glorious.

Cafe Gourmand

My favourite sort of pudding – Café Gourmand (at Le Café Gourmand)

We rode the funicular to the top of Montmartre, something which despite having visited Paris at least once a year for the last 15 years or so, we had never done. Then after visiting the Montmartre Museum, we walked down to the cemetery.  Paris has some great cemeteries and we never miss the chance to see what curiosities we can find.

Dr Pitchal

A psychoanalyst with a macabre sense of humour Dr. Guy Pitchal (1922-1989), Psychoanalyst known for working with many French celebrities — including the singer Dalida, who is buried nearby.

Nijinsky

The Great Nijinsky – looking a bit fed-up?

Zola

Emile Zola – we came across his magnificent tomb entirely by accident, after taking a wrong flight of stairs.

La Goulue

Cancan dancer extraordinaire, La Goulue (The Glutton).

Moped inventor

Robert Mayet – Inventor of the moped

Looking for somewhere to eat on Saturday evening we came across a number of shops already preparing for Christmas.

Polar bears

Christmas will apparently soon be with us!

Bees Gare du Nord

Bees get everywhere – no idea what this was about but saw it as we were heading for the Eurostar.

 

4 Comments

Filed under Aphidology, Aphids