Tag Archives: bees

Planes, trains and automobiles – insect killers?

I couldn’t not use this – it is (sadly) one of my favourite films 😊

Anyone who has driven (or walked) along a road will have come across roadkill, be it squirrels, pheasants, badgers, deer or even something more exotic, perhaps it us only us entomologists who notice the squashed invertebrates ☹

Dead carabids and mayflies Shay Lane, Staffordshire, 8th June 2021

But, lets leave the roadkill for a moment, and in the spirit of the title of the film, start in the air. The first thing I discovered when I started to search for the effects of aircraft on insects is the paucity of literature on the subject – it turns out that people are much more interested in stopping disease carrying insects being transported by air or, and coming as a bit of a surprise to me, stopping insects causing plane crashes (House et al., 2020; Grout & Russell, 2021). The aircraft industry is so concerned about the physical dangers posed to ‘planes by insects that NASA actually have a Bug Team dedicated to developing insect proof aircraft.

I am, however, more concerned about how dangerous aircraft are to insects. First, we need to know how many insects are up there and what the probability of them being struck and killed by aircraft is. I’m guessing that bug strike is pretty common, otherwise NASA wouldn’t have a Bug Team. The majority of insects in the air are found at 300-600 m, although this does vary in relation to time of day (Reynolds et al., 2005). Getting a figure for the actual number of insects in the air is as you might expect, actually quite difficult.  The first attempt to trap and collect insects using an aircraft was in 1926 in Louisiana (USA) using a specially designed trap (Glick, 1939).  These do not seem to have been particularly effective as 5 years of trapping, involving 1528 hours of flying, caught just under 30 000 insects (Glick, 1939).  Those of us who have operated pitfall traps for any length of time would consider this a very modest haul 😊

Glick (1939) The aircraft insect trap

That said, the exercise was obviously more hazardous than even collecting insects from roundabouts as this very laconic extract highlights:

 “The skill of the pilots who flew the collecting airplanes is evidenced by the fact that no fatalities occurred.  Only one major accident occurred, when a forced landing resulted in the destruction of the craft and injury to both the pilot (McGinley) and the writer. Such mishaps must be expected in a more or less hazardous undertaking.”

The distribution of catch number was very similar to that reported from the more recent UK study using radar (Reynolds et al., 2005) and is reinforced by this statement from the NASA Bug Team; “The reason we do these tests at low altitudes or do a lot of takeoffs and landings is because bug accumulation occurs at anywhere from the ground to less than 1,000 feet,” said Mia Siochi, a materials researcher at NASA Langley”.

Given the number of flights made globally and the investment being made into protecting aircraft from bug strike, I would assume that the number of insects being killed by aircraft worldwide is probably very high. I am sure that someone with the skill, time and inclination, can probably come up with a fairly realistic figure.  Over to you Dear Readers.

Next up, if we keep to the film title, are trains.  There has been a bit more work looking at the damage that trains do to insects, not a lot, but something is better than nothing.  Work collecting train kill from railway lines showed that snails were particularly vulnerable to being run over, similar to the effects on trail-following ermine moth caterpillars that I observed in Finland in 1981, with Ephemeroptera (Mayflies) in second place (Pop et al., 2020). This, as the authors suggest, was almost certainly due to the time of year and the presence of a lake nearby. Unfortunately no one has done the equivalent of a train splatometer which might be rewarding as these observations from correspondence in British Birds magazine suggest that locomotive engines are causing some mortality to flying insects.  Over to you Bug Life. How about getting the train companies to fit splatometers?

Finally, cars and their effect on insect life. There is anecdotal evidence out there, after all as drivers we have all seen moths in our headlights at night and used our windscreen washers and wipers to try and remove dried on insect corpses and their haemolymph from our front windscreens.

An observation by Ian Bedford

My front bumper – sadly (or perhaps not) much less insect spattered than in the past

Yes, anecdotally we know that insects are being hit by cars (see above) and on my front number plate, a couple of weeks ago (beginning of June) I counted 73 insects, mainly aphids after a 245 km trip. The problem as I see it, is quantifying the numbers killed and calculating the effect that this has on insect abundance. I have mentioned the splatometer in an earlier post which attempts to standardise the number plate counts and I am pleased to see that this has now been revived by Bug Life, and will hopefully carry on for many years. The idea behind this is that over the years we will be able to see if insect numbers as reflected by the change in numbers of splats are increasing, decreasing of remaining the same.  This will not, certainly as described, tell us how many insects are being killed by road using vehicles, although it would be possible if the data were collected over delineated stretches of road (Baxter-Gilbert et al., 2015).  It is not just flying insects that are killed by cars; not all flying insects fly across roads, many seem happy to walk to the other side, reckless as that may seem.

A brave, or possibly fool-hardy carabid beetle crossing the road – Guild Lane, Sutton, Staffordshire, 9th June 2021.

There have been enough studies done looking at the interactions between roads and insects for a review article to have been published fairly recently, although not all the papers deal directly with mortality effects (Munõz et al., 2015). Many studies have recorded the species affected and the number of dead individuals found but few have attempted to calculate what this means in total. Most studies, as we might expect, have been on large, easily identifiable charismatic species (Munõz et al., 2015) and it from these that we do have some idea of the magnitude of the mayhem caused by road traffic. Some of the figures are incredibly high. A survey of Odonata road kill, albeit near a wetland, of two 500 m stretches of dual carriageway in the Great Lakes region of the USA revealed that at least 88/km/day were being hit and killed by vehicles (Riffell, 1969).  Another study in the USA, this time on Lepidoptera, calculated that about 20 000 000 butterflies (mainly Pieridae) were killed in one week in September (McKenna et al., 2001). The most dramatic figures however, are those from a study in Canada which estimated that 187 billion pollinators (mainly Hymenoptera) are killed over the summer in North America (Baxter-Gilbert et al., 2015).  An unpublished study by Roger Morris (thank you Richard Wilson @ecology_digest for bringing this to my attention) also highlights the dangerous effects of cars on Hymenoptera). Despite the mounting evidence of the harm that road traffic does to insects there is remarkably little information about how this can be reduced, although I did find a paper that noted that if insects are struck by cars driving at speeds of 30-40 km/h they survive the crash whereas speeds greater than this prove fatal (Rao & Girish, 2007).  It might be possible to impose insect safe speed limits along stretches of road that go through sites of special insect interest (perhaps I should try and coin that acronym, SSII, as an additional/alternative term to SSSI (Sites of Special Scientific Interest), but I am not sure how amenable drivers would be to signs telling them to slow down because of insects😊, considering how few drivers slow down in response to the signs warning them about deer and other vertebrate hazards. Another option would be to design road vehicles so that the air flow across them pushes insects away rather than into them; this may already be fortuitously happening as Manu Saunders points in her interesting post about the ‘windscreen anecdote’.  That said, even if cars are more aerodynamic and less likely to splatter insects, the levels of road kill reported in the papers I have cited earlier, still imply that insects are being killed by traffic in huge numbers.

This one didn’t get stuck on a car, but died just the same – A519 outside Forton, Staffordshire, 15th June 2021

Even if we do accept that deaths down to direct impact with vehicles is lower than in the past, the roads on which we drive our cars are also having a negative effect on insect numbers. Roads, particularly those surfaced with tarmacadam, present an inhospitable surface to some insects which may make them reluctant to fly or walk across. It has been shown that bee and was communities can be different on different sides of a road (Andersson et al., 2017) as the road act as barriers, particularly for smaller species of bees (Fitch & Vaidya, 2021).

Despite the mortality that vehicles impose on insects, roads are not necessarily a totally bad thing for invertebrates; road verges, when sympathetically managed, can provide overwintering sites for a range of arthropod species (Saarinen et al., 2005; Schaffers et al., 2012) and some insect species seem to enjoy feeding on roadside vegetation because of the increased nitrogen content of the plants living alongside traffic (Jones & Leather, 2012).

Overall however, given the very high mortality rates directly associated with cars and other road traffic and the very real indirect effects caused by habitat fragmentation, it would seem that we have much to do to make roads safer for insects and other animals.

References

Andersson, P., Koffman, A., Sjödin, N.E. & Johansson, V. (2017) Roads may act as barriers to flying insects: species composition if bees and wasps differs on two sides of a large highway.  Nature Conservation, 18, 41-59.

Baxter-Gilbert, J.H., Riley, J.L., Neufeld, C.J.H., Litzgus, J.D., & Lesbarreres, D. (2015) Road mortality potentially responsible for billions of pollinating insect deaths annually. Journal of Insect Conservation, 19, 1029-1035.

Fitch, G. & Vaidya, C. (2021) Roads pose a significant barrier to bee movement, mediated by road size, traffic and bee identity. Journal of Applied Ecology, 58,1177–1186.

Glick, P.A. (1939) The Distribution of Insects, Spiders, and Mites in the air.  Technical Bulletin no. 673, USDA. https://naldc.nal.usda.gov/download/CAT86200667/PDF

Grout, A. & Russell, R.C. (2021)H Aircraft disinsection: what is the usefulness as a public health measure? Journal of Travel Medicine, 28, taaa124.

House, A.P.N., Ring, J.G., Hill, M.J. & Shaw, P.P. (2020) Insects and aviation safety: The case of the keyhole wasp Pachodynerus nasidens (Hymenoptera: Vespidae) in Australia. Transportation Research Interdisciplinary Perspectives, 4, 100096.

Jones, E.L. & Leather, S.R. (2012) Invertebrates in urban areas: a review. European Journal of Entomology, 109, 463-478.

McKenna, D.D., McKenna, K., Malcolm, S.B. & Berenbaum, M.R. (2001) Mortality of lepidoptera along roadways in Central Illinois. Journal of the Lepidopterist’s Society, 55, 63-68.

Melis, C., Olsen, C.B., Hyllvang, M., Gobbi, M., Stokke, B.G., & Røskaft, E. (2010) The effect of traffic intensity on ground beetle (Coleoptera: Carabidae) assemblages in central Sweden. Journal of Insect Conservation, 14, 159-168.

Munõz, P.T., Torres, F.P. & Megias, A.G. (2015) Effect of roads on insects: a review. Biodiversity & Conservation, 24, 659-682.

Pop, D.R., Maier, A.R.M., Cadar, A.M., Cicort-Lucaciu, A.S., Ferenți, S. & Cupșa, D. (2020) Slower than the trains! Railway mortality impacts especially snails on a railway in the Apuseni Mountains, Romania. Annales Zoologici Fennici, 57, 225-235.

Rao, R.S.P & Girish, M.K.S. (2007) Road kills: assessing insect casualties using flagship taxon. Current Science, 92, 830-837.

Reynolds, D.R., Chapman, J.W., Edwards, A.S., Smith, A.D., Wood, C. R., Barlow, J. F. and Woiwod, I.P. (2005) Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations. Bulletin of Entomological Research, 95, 259-274.

Riffell, S.K. (1999) Road mortality of dragonflies (Odonata) in a Great Lakes coastal wetland. Great Lakes Entomologist, 32, 63-74.

Saarinen, K., Valtonen, A., Jantunen, J. & Saarnio, J. (2005) Butterflies and diurnal moths along road verges: does road type affect diversity and abundance? Biological Conservation, 123, 403-412.

Schaffers, A.P., Raemakers, I.P., & Sýkora, K.V. (2012) Successful overwintering of arthropods in roadside verges. Journal of Insect Conservation, 16, 511-522.

2 Comments

Filed under EntoNotes, Roundabouts and more

Pick & Mix 62 – bees, orchards, bugs, pollinators, blowflies, birds, beetles and spuds

Another great piece of natural history writing from Philip Strange – Sunday in the orchard with butterflies

Carrion flowers and their pollinators – Don’t stop and smell the flowers

One of the biggest challenges facing emerging pollinators each spring is finding food. What we plant in our gardens, parks and around our workplaces can be a huge help for foraging insects. So take a bow Dance Connect in Kinross who have skilfully transformed the area around their dance and fitness studio into a pollinator-friendly hot spot.

Great review of bee emojis – very amusing

Is your local council verge friendly?  Very interesting and useful article revealing which councils are taking biodiversity issues seriously 

Nice article from one of my former MSc students about the usefulness of blowflies and also has a nice graphic showing the pollinator league of fame

Six reasons why potatoes are good for you – I have always been a great fan of the not so humble spud as my carbohydrate source – so much more tasty and versatile than rice

Is our kindness to garden birds harming other bird species?  Garden bird feeders are boosting blue tit numbers – but leaving other species hungry

Bug splatter – please take part

What’s that beetle? Ask the algorithm.  Machine learning and beetle identification 

3 Comments

Filed under Pick and mix

Pick & Mix 61 – Terry Pratchett, chickens, trees, species conservation, wasps, bees, eating weeds and much more

Google’s new timelapse shows 37 years of climate change anywhere on earth, including your neighbourhood

Bay bees love carbs – By considering the nuances of bees’ dietary needs, we can design nutritionally balanced seed mixes that help pollinators shore up our ecosystems and food supplies.

Seirian Sumner writes about her love of wasps and why you and I should too

Why I only buy organic or truly free-range chicken and eggs – Revealed: true cost of Britain’s addiction to factory-farmed chicken – it comes at a price though. If you buy from a supermarket, a small mass reared chicken costs approximately £3, free-range’ same size, £9, and the same size organic, £18.

Jeremy Fox on which Terry Pratchett books to read and in which order – I don’t necessarily agree with him but always happy to spread the word about the late great Terry Pratchett. Fun fact, I once had his email address and used to correspond with him, Then one day, having just read the Carpet People and the Bromeliad trilogy and really enjoyed them I emailed him and said so, giving as my reason that it was like an updated and funny version of the Borrowers. Unfortunately he thought I was accusing him of plagiarism and that was the end of our relationship L

There aren’t enough trees in the world to offset society’s carbon emissions – and there never will be, but that doesn’t mean we should stop planting them

Mountain Avens – the Scottish sunflowers?

Sobering read from Charley Krebs – “There are times when we either act or give up, so if you think that the Covid epidemic, the conservation of endangered species, and the protection of old growth forests are irrelevant problems to your way of life, stop reading here. These three major problems are here and now and have come to a head as a crunch: do something or quit.”

Got a problem with Japanese Knotweed?  Try eating it 🙂

Terry McGlynn asks “Should reviewers of journal papers be paid?” 

Leave a comment

Filed under Pick and mix

Let your dandelions and other flowering ‘weeds’ be

This last couple of weeks parts of my daily walks have been accompanied by, the to me, unwelcome din of motor lawnmowers as lots of my fellow villagers strive to turn their lawns into ecological deserts. One of my neighbours has, to my knowledge, cut his lawn five times since the beginning of March, me I’ve done my spring cut and that’s it until autumn.

An ecological desert 😦

This mania for close-cropped lawns, sometimes ‘artistically’ striped, is, I think, the fault of my grandparent’s generation, which took a municipal park attitude to gardens, especially the bit that the neighbours could see; close-cropped, weed-free grass with regimented flower beds, also equally weed-frees. Out of sight, back gardens could be less manicured, and depending on the space available, might include a vegetable garden (also scrupulously weed-free), and a patch of lawn to be used by children for ball games and other activities. Unfortunately they drummed this philosophy into their children, who in their turn, with only a few exceptions (me for one), passed this fetish on to my generation. Sadly, my father, a keen gardener, also espoused this view as did the parents of all my friends. I spent many a grumpy hour removing dandelions and thistles from our front lawn and flower beds at my father’s behest!

So what are these weeds that so many people seem to hate? To those growing crops of economic value, be they agricultural, horticultural or silvicultural, then I guess the following definitions are very reasonable and relatable.

Plants that threaten human welfare either by competing with other plants that have food, timber of amenity value, or by spoiling and thus diminishing the value of a product

Weeds arise out of the mismatch between the habitats we create and the plants we choose to grow in them

Begon, Harper & Townsend (1996)

A plant that originated under a natural environment and, in response to imposed and natural environments, evolved and continues to do so as an interfering associate with our desired plants and activities” Aldrich & Kremer (1997)

There are more tolerant descriptions of weeds available, which are much more in accord with my views:

What is a weed? A plant whose virtues have not yet been discovered” (Emerson, 1878)

, “A weed is but an unloved flower!” (Wilcox, 1911)

A plant condemned without a fair trial” (de Wet & Harlan, 1975)

I have, as I have mentioned several times already, been doing a lot of walking during the covid pandemic, or should it now be referred to as the Covid Pandemic? At this time of year, Spring, the early flowers of the hedgerows and roadside verges are alreday out; cherry plum (Prunus cerasifera), blackthorn or sloe (Prunus spimosa) and closer to the ground, but as equally pretty, daisies (Bellis perennis), dandelions (Taraxacum officinale), Lesser Celandines ( Ficaria verna (although some of you may know it as Ranunculus ficaria), and Wood Anemones (Anemonoides nemorosa). The latter two species, although relatively common, are unlikely to be found in the average garden, as they have fairly specific habitat requirements.  Daisies and dandelions on the other hand, are pretty much ubiquitous, although the former do not attract as much opprobrium from the traditional gardener as dandelions do. This is a great shame, as ecologically speaking dandelions are an extremely important resource for pollen and nectar feeding insects.

Given the concerns about the decline of insects in general over the last forty years, we should be celebrating the dandelion, not trying to eradicate it from our lawns. Just feast your eyes on some of the beauties that I have seen over the last few days.

Pollen beetles March 20th 2021

Male tawny mining bee Andrena fulva – Sutton March 25th 2021

Bumble bee, Sutton March 30th 2021

Seven spot lady bird, too early for aphids, Oulton Road March 30th 2021


Peacock butterfly in a very striking pose, Guild Lane, Sutton, April 3rd 2021.

I’m not alone in my love of dandelions 🙂

We shouldn’t forget the humble daisy either. It provides nectar to many butterfly species, including among others, the Green Hairstreak, the Grizzled Skipper, the Small Copper and the Small White. They are also important resources for honey bees (Raquier et al., 2015), bumblebees and hoverflies (Blackmore & Goulson, 2014).

A nice patch of daisies.

Domestic gardens, if managed correctly, have tremendous potential as reservoirs of insects and other invertebrates of ecological importance (Davies et al, 2009). The easiest thing that you can do to help the insects is to reduce the frequency at which you mow your lawn and grass verges. To sum it up in a nutshell, the less you move, the more flowers you get and the more flowers you get the more nectar and pollen feeding insects you make happy, some of which can be rare and endangered (Wastian et al., 2016).  

The less frequently you mow, the more flowers you get. The more flowers you get, the more bumblebees you get (George, 2008).

It is not just flower feeding insects that benefit from reducing your lawn mowing activities; grass feeding insects also benefit from longer grass ( Helden & Leather, 2005) and if, for some strange reason, you are not a great fan of bugs, just remember that the more bugs you have the more birds you will attract (Heden et al.,  2012). So do your bit to save the planet, be like me, only mow your lawn twice a year.

References

Aldrich, R.J. & Kremer, R.J. (1997) Principles in Weed Management. Panima Publishing Corporation.

Begon, M., Harper, J,L. & Townsend, C.R. ( 1996) Ecology, 3rd Edition, Blackwell Science, oxford.

Blackmore, L.M. & Goulson, D. (2014) Evaluating the effectiveness of wildflower seed mixes for boosting floral diversity and bumblebee and hoverfly abundance in urban areas. Insect Conservation & Diversity, 7, 480-484.

Davies, Z.G., Fuller, R.A., Loram, A., Irvine, K.N., Sims, V. & Gaston, K.J. (2009) A national scale inventory of resource provision for biodiversity within domestic gardens. Biological Conservation, 142, 761-771.

De Wet, J.M.J., Harlan, J.R.  (1975) Weeds and domesticates: Evolution in the man-made habitat. Economic Botany, 29, 99–108.

Emerson, R.W.(1878) The Fortunes of the Republic. The Riverside Press, Boston, USA.

Garbuzov, M., Fensome, K.A. & Ratnieks, F.L.W.  (2015)   Public approval plus more wildlife: twin benefits of reduced mowing of amenity grass in a suburban public park in Saltdean, UK. Insect Conservation & Diversity, 8, 107-119.

George, W. (2008) The Birds and the Bees: Factors Affecting Birds, Bumblebees and Butterflies in Urban Green Spaces, MSc Thesis, Imperial College, London.

Helden, A.J. & Leather, S.R. (2005) The Hemiptera of Bracknell as an example of biodiversity within an urban environment. British Journal of Entomology & Natural History, 18, 233-252.

Helden, A.J., Stamp, G.C. & Leather, S.R. (2012) Urban biodiversity: comparison of insect assemblages on native and non-native trees. Urban Ecosystems, 15, 611-624.

Lerman, S.B., Contostac, A.R., Milamb, J. & Bang, C. (2018) To mow or to mow less: Lawn mowing frequency affects bee abundance and diversity in suburban yards. Biological Conservation, 221, 160-174.

Requier, F., Odoux, J., Tamic, T.,Moreau, N., Henry, M., Decourtye, A. & Bretagnolle, V. (2015)  Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weedsEcological Applications, 25, 881–890.  

Wastian, L., Unterweger, P.A.& Betz, O. (2016) Influence of the reduction of urban lawn mowing on wild bee diversity (Hymenoptera, Apoidea). Journal of Hymenoptera Research, 49, 51–63.

Wilcox, E.W. (1911) Poems of Progress and New Thought Pastels. London: Gay & Hancock, 1911.

3 Comments

Filed under EntoNotes

Pick & Mix 47 – Captain Cook, coffee, tea, moths and bees

Follow Captain Cook on his Pacific voyages – nice interactive experience

Buried under colonial concrete – the lost botany of Botany Bay

Coffee, not just a pick you up, but a knock you down (if you’re an insect that is)

Did you know that there is an international tea day? All about tea for those of you who prefer tea to coffee

Beautifully written and equally beautifully illustrated essay by the aptly named Linden Hawthorne  (@Haggewoods onTwitter) on the Latin names of plants and animals

Gwen Pearson gives good advice on how to talk to a reporter about entomology

Moths – the mostly unseen and definitely unappreciated pollinators

Some cool bee videos from Jeff Ollerton

The bees are the stars – a novel about bees

For the non-entomologists (and entomologists) -urban fantasy novels: why they matter and which ones to read first – some good suggestions here

Leave a comment

Filed under Pick and mix

Pick & Mix 43 – more snippets from the web

Manu Saunders on the rights and wrongs of altmetrics and other measures of impacts

From a few years ago, but worth a read,  How Birds are Fooled by Ladybird Mimicry and Why Spiders are Amazing

I had never heard of this plant – interesting post from Markus Eichhorn – Kratom – when ethnobotany goes wrong

Megan Duffy on the work-life balance conundrum.  Something we should all think hard about.

Insect numbers may be in decline but some are expanding their ranges – latest research from Charlie Outhwaite and colleagues shows that not all is doom and gloom, although as you might expect, it is not simple

A whole issue of the journal Insect Conservation & Diversity is dedicated to the subject of insect declines and otherwise, and what we might do about it. Free to access for a year.

Do bees have consciousness?  Not proven yet but Lars Chittka thinks that the fact that they can solve Molyneux’s problem may suggest they might

On the other side of the coin, in an attempt to reduce insect numbers, in this case the Diamondback moth, entomologists in the USA report on the first field release of a genetically modified, self-limiting insect

The end of farming? Interesting read but can this approach feed the world?

Cover letters – why bother? I don’t so why should you?

Leave a comment

Filed under Pick and mix

Shocking News – the truth about electroperception – insects can ‘feel’ electric fields

Static electric fields are common throughout the environment and this has been known for some time (e.g Lund (1929) and back in 1918, the great Jean-Henri Fabre, writing about the dung beetle, Geotrupes stated “They seem to be influenced above all by the electric tension of the atmosphere. On hot and sultry evenings, when a storm is brewing, I see them moving about even more than usual. The morrow is always marked by violent claps of thunder

Given this, it is surprising that it was not until the 1960s that entomologists started to take a real interest in electroperception, when a Canadian entomologist decided to investigate the phenomenon further, but using flies (Edwards, 1960).  He found that if Drosophila melanogaster and Calliphora vicina exposed to, but not in contact with, an electrical field, they stopped moving. Calliphora vicina needed a stronger voltage to elicit a response than D. melanogaster, which perhaps could be related to their relative sizes. It seemed that their movement was reduced when electrical charge applied and changed, but not if the field was constant.

Responses of two fly species to electrical fields (From Edwards, 1960)

In a follow up experiment with the the Geometrid moth Nepytia phantasmaria he showed that females were less likely to lay eggs when exposed to electrical fields (Edwards, 1961), but the replication was very low and the conditions under which the experiment was run were not very realistic.

In the same year, Maw (1961) working on the Ichneumonid wasp, Itoplectis conquisitor, which is attracted to light, put ten females into a chamber with a light at one end but with parts of the floor charged at different levels.  The poor wasps were strongly attracted to the light but the electrical ‘barrier’ slowed them down; the stronger the charge, the greater the reluctance to enter the field.

On the other hand, some years later, working with the housefly, Musca domestica and the cabbage looper, Trichoplusia ni, across a range of different strength electrical fields, Perumpral et al., (1978)   found no consistent avoidance patterns in where the houseflies preferred to settle, but did find that wing beat frequency of male looper moths was significantly affected, although inconsistently.  Female moths on the other hand were not significantly affected.  This put paid to their intention to develop a non-chemical control method for these two pests.

A more promising results was obtained using the cockroach Periplaneta americana.  Christopher Jackson and colleagues at Southampton University showed that the cockroaches turned away, or were repulsed, when they encountered an electric field and if continuously exposed to one, walked more slowly, turned more often and covered less distance (Jackson et al., 2011).  As an aside, this is similar to the effects one of my PhD students found when she exposed carabid beetles exposed to sub-lethal applications of the insecticide dimethoate*.

Periplaneta americana definitely showing a reluctance to cross an electrical field (Jackson et al., 2011).

Other insect orders have also been shown to respond to electric fields.  Ants, in particular the fire ant, Solenopsis invicta, are apparently a well-known hazard to electrical fittings (MacKay et al., 1992), and a number of species have been found in telephone receivers (Eagleson, 1940), light fittings and switches (Little, 1984), and even televisions (Jolivet, 1986), causing short circuits and presumably, coming to untimely ends 🙂

Rosanna Wijenberg and colleagues at Simon Fraser University in Canada, really went to town and tested the responses of a variety of different insect pests to electric fields. They found that the common earwig, Forficula auricularia, two cockroaches, Blatta germanica, Supella longipalpa, two Thysanurans, the silverfish, Lepisma saccharina and the firebrat Thermobia domestica were attracted to, or at least arrested by electrified coils.  Periplaneta americana, on the other hand, was repulsed (Wijenberg et al., 2013).  They suggested that using electrified coils as non-toxic baits might be an environmentally friendly method of domestic pest control.  I have, however, not been able to find any commercial applications of this idea although perhaps you know better?

Although a number of marine vertebrates generate electricity and electric fields as well as perceiving and communicate using them, there was, until fairly recently, no evidence of electrocommunication within the insect world (Bullock, 1999); after all, they have pheromones 😊

When we look at the interaction between insects and electromagnetic fields there is growing evidence that bees, or at least honey bees, like some birds (Mouritsen et al., 2016) have the wherewithal and ability to navigate using magnetic fields (Lambinet et al., 2017ab).  Interestingly**, honeybees, Apis mellifera have been shown to generate their own electrical fields during their waggle dances which their conspecifics are able to detect (Greggers et al., 2013).  Bumble bees (Bombus terrestris), have also been shown to be able to detect electrical fields.  In this case, those surrounding individual plants.  The bees use the presence or absence of an electrical charge to ‘decide’ whether to visit flowers or not. If charged they are worth visiting, the charge being built up by visitation rates of other pollinating insects  (Clarke et al., 2013)

Since I’m on bees, I can’t leave this topic without mentioning mobile phones and electromagnetic radiation, although it really deserves an article of its own.  The almost ubiquitous presence of mobile phones has for a long time raised concern about the effect that their prolonged use and consequent exposure of their users to electromagnetic radiation in terms of cancer and other health issues (Simkó & Mattson, 2019). Although there is growing evidence that some forms of human cancer can be linked to their use (e.g. Mialon & Nesson, 2020), the overall picture is far from clear (Kim et al., 2016). Given the ways in which bees navigate and the concerns about honeybee populations it is not surprising that some people suggested that electromagnetic radiation as well as neonicitinoids might be responsible for the various ills affecting commercial bee hives (Sharma & Kumar, 2010, Favre, 2011). The evidence is far from convincing (Carreck, 2014) although a study from Greece looking at the intensity of electromagnetic radiation from mobile phone base stations on the abundance of pollinators found that the abundance of beetles, wasps and most hoverflies decreased with proximity to the base stations, but conversely, the abundance of bee-flies and underground nesting wild bees increased, while butterflies were unaffected (Lázaro et al., 2016). A more recent study has shown that exposure to mobile phones resulted in increased pupal mortality in honeybee queens but did not affect their mating success (Odemer & Odemer, 2019).  All in all, the general consensus is that although laboratory studies show that electromagnetic radiation can affect insect behaviour and reproduction the picture remains unclear and that there are few, if any field-based studies that provide reliable evidence one way or the other (Vanbergen et al., 2019).   Much more research is needed before we can truly quantify the likely impacts of electromagnetic radiation on pollinators and insects in general.

 

Acknowledgements

I must confess that I had never really thought about insect electroperception until I was at a conference and came across a poster on the subject by Matthew Wheelwright, then an MRes student at the University of Bristol, so it is only fair to dedicate this to him.

 

References

 

Bullock, T.H. (1999) The future of research on elctroreception and eclectrocommunicationJournal of Experimental Biology, 10, 1455-1458.

Carreck, N. (2014) Electromagnetic radiation and bees, again…, Bee World, 91, 101-102.

Clarke, D., Whitney, H., Sutton, G. & Robert, D. (2013) Detection and learning of floral electric fields by bumblebees. Science, 340, 66-69.

Eagleson, C. (1940) Fire ants causing damage to telephone equipment.  Journal of Economic  Entomology, 33, 700.

Edwards, D.K. (1960) Effects of artificially produced atmospheric electrical fields upon the activity of some adult Diptera.  Canadian Journal of Zoology, 38, 899-912.

Edwards, D.K. (1961) Influence of electrical field on pupation and oviposition in Nepytia phantasmaria Stykr. (Lepidoptera: Geometridae). Nature, 191, 976.

Fabre, J.H. (1918) The Sacred Beetle and Others. Dodd Mead & Co., New York.

Favre, D. (2011) Mobile phone induced honeybee worker piping. Apidologie, 42, 270-279.

Greggers, U., Koch, G., Schmidt, V., Durr, A., Floriou-Servou, A., Piepenbrock, D., Gopfert, M.C. & Menzel, R. (2013) Reception and learning of electric fields in bees. Proceedings of the Royal Society B, 280, 20130528.

Jackson, C.W., Hunt, E., Sjarkh, S. & Newland, P.L. (20111) Static electric fields modify the locomotory behaviour of cockroaches. Journal of Experimental Biology, 214, 2020-2026.

Jolivet, P. (1986) Les fourmis et la Television. L’Entomologiste, 42,321-323.

Kim, K.H., Kabir, E. & Jahan, S.A. (2016) The use of cell phone and insight into its potential human health impacts. Environmental Monitoring & Assessment, 188, 221.

Lambinet, V., Hayden, M.E., Reigel, C. & Gries, G. (2017a) Honeybees possess a polarity-sensitive magnetoreceptor. Journal of Comparative Physiology A, 203, 1029-1036.

Lambinet V, Hayden ME, Reigl K, Gomis S, Gries G. (2017b) Linking magnetite in the abdomen of honey bees to a magnetoreceptive function. Proceedings of the Royal Society, B., 284, 20162873.

Lazáro, A., Chroni, A., Tscheulin, T., Devalez, J., Matsoukas, C. & Petanidou, T. (2016) Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators.  Journal of Insect Conservation, 20, 315-324.

Little, E.C. (1984) Ants in electric switches. New Zealand Entomologist, 8, 47.

Lund, E.J. (1929) Electrical polarity in the Douglas Fir. Publication of the Puget Sound Biological Station University of Washington, 7, 1-28.

MacKay, W.P., Majdi, S., Irving, J., Vinson, S.B. & Messer, C. (1992) Attraction of ants (Hymenoptera: Formicidae) to electric fields. Journal of the Kansas Entomological Society, 65, 39-43.

Maw, M.G. (1961) Behaviour of an insect on an electrically charged surface. Canadian Entomologist, 93, 391-393.

Mialon, H.M. & Nesson, E.T. (2020) The association between mobile phones and the risk of brain cancer mortality: a 25‐year cross‐country analysis. Contemporary Economic Policy, 38, 258-269.

Mouritsen, H., Heyers, D. & Güntürkün, O. (2016) The neural basis of long-distance navigation in birds. Annual Review of Physiology, 78, 33-154.

Odemer, R., & Odemer, F. (2019). Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Science of The Total Environment, 661, 553–562.

Perumpral, J.V., Earp, U.F. & Stanley, J.M. (1978) Effects of electrostatic field on locational preference of house flies and flight activities of cabbage loopers. Environmental Entomology, 7, 482-486.

Sharma, V.P. & Kumar, N.R. (2010) Changes in honeybee behaviour and biology under the influence of cellphone radiation. Current Science, 98, 1376-1378.

Simkó, M. & Mattson, M.O. (2019) 5G wireless communication and health effects—A pragmatic review based on available studies regarding 6 to 100 GHz. International Journal of Environmental Research & Public Health, 16, 3406.

Vanbergen, A.J., Potts, S.G., Vian, A., Malkemper, E.P., Young, J. & Tscheulin, T. (2019) Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): Evidence and knowledge gaps. Science of the Total Environment, 695, 133833.

Wijenberg, R., Hayden, M.E., Takáca, S. & Gries, G. (2013) Behavioural responses of diverse insect groups to electric stimuli. Entomoloogia experimentalis et applicata, 147, 132-140.

 

*

yet another entry for my data I am never going to publish series 😊

 

**

My wife really hates it when I start a sentence like this, as she says “You’re always starting sentences like that and it is rarely interesting”

1 Comment

Filed under EntoNotes

Pick and mix 20 – visual treats from the web

Imagine a galaxy populated by Star Wars insects!  Great illustrations by Richard Wilkinson

Do you like orchids?  Watch this

How to recognise Anthracnose plant diseases

Beautiful bees

Hawkmoths and their parasitoids in action – beautiful stuff from Gil Wizen

Magnificent butterfly videos

Very informative article about Giovanni Garzoni and some great insect details in her paintings

Artist creates amazing insect sculptures using nothing but old car parts and scrap metal

Really interesting article about insect Biodiversity in Meiji and Art Nouveau Design

You can’t help but feel sorry for the poor old Daddy Longlegs, but it is very interesting to see how they are able to adapt to losing their legs

 

Leave a comment

Filed under Pick and mix

Pick and mix 16 – more links to check out

Wise words from the Oxford University Museum of Natural History

If you live in the UK and like trees in your garden, here are some suggestions of native species to plant – all are good for insects and birds

On managing your urban garden as a productive ecosystem

An excellent resource of historical research done at Rothamsted Research Station – this section all about bees

Still more on bees, this time how bees that are feeling unwell change their diets to fight of infection

More and more species being discovered yet taxonomists are an endangered species themselves; they deserve our respect and more funding

They may be unwanted neighbours but these are beautiful pictures from Gil Wizen

Maria Sibylla Merian, a prodigy from the 17th Century; artist, naturalist and entomologist – remarkable achievements

Many animals, including insects, can count

If you have ever wondered why entomologist kill insects and have 28 minutes to spare listen to this

An irreverent obituary of legendary French chef Paul Bocuse

1 Comment

Filed under Pick and mix

Pick and mix 13 – Ten more links to things I found of interest

A mixed bag

 

Asian hornets in Spain via Ray Cannon

Unusual dragonfly behaviour via the Bug Blog

Practice what you preach – ecologists shouldn’t fly, I certainly don’t 🙂

Charley Krebs asks how randomly do ecologists sample and does it really matter?

Steffan Lindgren reviews Alexander von Humboldt

This is the link to the paper reporting the huge decline in insect abundance that made all the headlines the other week.  Scary stuff.

This is a link to Manu Saunders’ excellent blog post putting those same headlines in perspective

A great post about why anyone from any background should be able to study and work in science

A poem about how some flowers help bees find them using nanoscale ridges

Using natural history collections as primary data for ecological research

Leave a comment

Filed under Pick and mix