Tag Archives: beetles

Being inspired by the BES

This week (20th July) I have had the privilege of being able to interact with 50 undergraduates (mainly just finished their first year) under the auspices of the British Ecological Society’s new undergraduate summer school held at the Field Studies Council’s Malham Tarn Centre. The scheme enables aspiring ecologists to have “an opportunity to enhance their existing knowledge with plenary lectures from senior ecologists, fieldwork, workshops, careers mentoring and more at a week-long residential course” This was especially pleasurable for me because as a school boy and student I spent several enjoyable camping holidays at Malham and it gave me an opportunity to take part in a field course again, something I have missed since leaving Silwood Park where I ran the now defunct annual two-week long Biodiversity & Conservation field course. The programme included two ecological luminaries and old friends of mine, Sue Hartley from the University of York and plant scientist and author, Ken Thompson formerly of Sheffield University and also Clare Trinder from the University of Aberdeen.  Also in the programme was conservation biologist, Stephanie Januchowski-Hartley,  and additional input from the Chartered Institute of Ecology & Environmental Management (CIEEM), microbial ecologist, Dr Rob Griffiths from CEH and ecologist Dr Peter Welsh of the National Trust.

I arrived mid-morning of the Tuesday, having driven up from Shropshire to Yorkshire the night before, having taken the opportunity to stay in the old family home in Kirk Hammerton before it is put up for sale. Whilst there I also set a few pitfall traps to collect some insects that we might not catch otherwise. As it happened they were a dismal failure, returning mainly spiders, harvestmen and woodlice, plus one nice carabid beetle, more of which later. The weather didn’t look all that promising for an insect sampling session but I kept my fingers crossed and hoped that it wouldn’t rain as much as it did almost 40 years ago when my best friend from school and I aborted our camping holiday at nearby Malham Cove after three days of solid rain 😉

Malham Tarn

Malham Tarn – not quite raining

  I was greatly amused on arriving to be greeted by a very large arachnid lurking on an outhouse.

Malham spider

We breed them big in Yorkshire!

Malham Tarn FSC

Malham Tarn Field Studies Centre

After checking my equipment and locating suitable sampling sites I joined the students, Karen Devine, the BES External Affairs manager and some of the PhD mentors for lunch. After lunch it was my slot, a chance to infect (sorry, inspire), fifty ecologically included undergraduates with a love of insects. After being introduced by Karen I launched into my talk to a very full room of students.

Karen Devine

Karen instilling order and attention 😉

Ready to be inspired

Ready and waiting to be inspired

The undergraduates came from thirty different UK universities with a strong female bias, 34:16. Exeter University had four representatives, with Reading, Liverpool John Moores, UCL and Bristol with three each. I was sorry to see that there were no students from my Alma mater Leeds, or from my former institution, Imperial College, once regarded as the Ecological Centre of the UK, although UEA where I did my PhD, had two representatives.  There was also one representative from my current place of work, Harper Adams University. Incidentally one of the students turned out to have gone to the same school that I did in Hong Kong, King George V School, albeit almost fifty years apart; a small world indeed.

I set the scene by highlighting how many insect species there are, especially when compared with vertebrates.

The importance of insects

The importance of insects and plants

Number of animal species

Or to put it another way

After a quick dash through the characteristics of insects and the problems with identifying them, exacerbated by the shortage of entomologists compared with the number of people working on charismatic mega-fauna and primates, I posed the question whether it is a sound policy to base conservation decisions on information gained from such a small proportion of the world’s macro-biota.

Then we were of into the field, although not sunny, at least it was not raining so I was able to demonstrate a variety of sampling techniques; sweep netting with the obligatory head in the bag plus Pooter technique, butterfly netting, tree beating and, as a special treat, motorized suction sampling, in this instance a Vortis.

Sampling

With aid of the PhD mentors and Hazel Leeper from the Linnaen Society, the students were soon cacthing interesting things (not all insects) and using the Pooters like experts.

Students sampling

Getting close up with the insects

I also let some of the students experience the joy of the Vortis, suitably ear-protected of course. All good things come to an end and it was then time to hit the microscopes, wash bottles, mounted pins and insect keys.

In teh lab

Getting stuck in – picture courtesy Amy Leedale

Down the microscope

What’s this?

I was very impressed with how well the students did at getting specimens down to orders and families and have every confidence that there are a number of future entomologists among them. After the evening meal, Kate Harrison and Simon Hoggart from the BES Publications Team introduced the students to the tactics of paper writing and publishing which I think they found something of an eye-opener. The students, after a rapid descent on the bar, enjoyed a Pub Quiz whilst I relaxed with a glass of wine until it was dark enough for me to demonstrate the wonders of using fluorescent dust to track our solitary carabid beetle using my UV torch before heading off to bed.

Fluorescent carabid Eloise Wells

Glow in the dark carabid beetle – the bright lights of Malham Tarn – photo courtesy of Eloise Wells

I was sorry to have to leave the next morning, it would have been great fun to have stayed the full week, but next year I do hope to be able to be there for at least two days and nights so that we can do pitfall trapping and light trapping and of course, have more fun with fluorescent insects.

I hope the students found the whole week inspirational and useful, I was certainly inspired by their obvious enjoyment and interest and will be surprised I if do not come across some of them professionally in the future.

Well done BES and congratulations to Karen and her team for providing such a great opportunity for the students. I am really looking forward to next year and being able to see great Yorkshire features like this in the sunshine 😉

Yorkshire grit

 

8 Comments

Filed under EntoNotes, Teaching matters, Uncategorized

Entomological classics – the pitfall trap

Pitfall arghh I would be amazed if there are any entomologists who have not deployed a pitfall trap or two at some stage in their career. I would also hazard a guess that quite a few non-entomological ecologists have come across the joys of pitfall trap setting and catch sorting as part of their undergraduate training; most field courses seem to include a pitfall trap day, and rightly so.  Pitfall trapping is after all, probably the simplest and most efficient way of collecting data, and not always insects 😉 Pitfall - tapir

Tapir pitfall trap

More seriously though, pitfall traps are a remarkably simple and incredibly versatile way of sampling insects, particularly those that are active on the soil surface (epigeal) e.g carabid beetles. Pitfall forest They can be used in most habitats where you are able to dig into the soil,

Pitfall traps cheap

are very cheap as they can be made from easily obtainable household materials Pitfall traps and can be modified easily depending on your objectives and sampling conditions.  It is very important however, that the lip of the trap is either flush with or below the soil surface.  Not very many beetles or other invertebrates,  are willing to climb up the steep sides  to allow you to capture them. Pitfall - spatial patterns They are also amenable to being deployed in a variety of statistically meaningful ways. (Figure ‘borrowed’ from Woodcock (2005)). Pitfall traps - catch a lot They are of course not perfect.   Some of my students complain that they catch too much!

There has been, and continues to be, much debate about what the catch actually represents.  Are they a measure of activity or of density, i.e. do the trap catches represent the most active and careless beetles, rather than the most abundant?  Southwood (1966) in the first edition of Ecological Methods is fairly dismissive of their use except as a way of studying the activity, seasonal incidence and dispersion of single species and considered them to be of no use whatsoever in comparing communities.  Other authors argue however, that if the trapping is carried out over a long period of time then the data collected can be representative of actual abundance (e.g. Gist & Crossley, 1973; Baars, 1979) and despite Southwood’s comments, they are probably most often used to compare communities (e.g. Rich et al., 2013; Zmihorski et al., 2013;  Wang et al., 2014) For a very thorough account of the use and abuse of pitfall traps see Ben Woodcock’s excellent 2005 article (and I am not just saying that because he is one of my former students). You might expect, given the fact that pitfalls were used by our remote ancestors to trap their vertebrate prey, that entomologists would have adopted this method of trapping very early on, especially given the fact that nature got there first, e.g. as used by larvae of the antlion. Antlion trap

Antlion ‘pitfall traps’.

I was therefore surprised when I started researching this article to find that the earliest reference I could find in the scientific literature was Barber (1931).  I found this very hard to believe so resorted to Twitter.  Richard Jones suggested that a sentence in Pitfall silver sand reference

Notes on Collecting and Preserving Natural History Objects

referring to silver sand pits might be a reference to an early form of pitfall trap.  On further research however, it turned out that sand pits were the results of sand mining operations and were used opportunistically by entomologists.  They worked in a very similar way to Pitfall - St Austell

St Austell Ruddle Moor Sand Pit http://www.cornwall-opc.org/Par_new/a_d/austell_st.php

intercept traps (the subject of a future post).   Interestingly, in some parts of the world, sand pits are now being restored in some places as conservation tools for digger wasp sand bees. Pitfall Bohemia

Sand pit restoration – Bohemia.  http://www.outdoorconservation.eu/project-detail.cfm?projectid=17

  But, I digress.  My next port of call was The Insect Hunter’s Companion (Greene, 1880) which I felt certain would mention pitfall traps.  To my surprise, in the 1880s, entomologists intent on capturing beetles, either pursued them with nets, turned over stones and logs, removed bark from trees, used beating trays or even dug holes in the ground, but never used pitfall traps!  So all very active and energetic methods – no sit and wait in those days 😉 So it seems that Barber’s 1931 description of a pitfall trap does indeed commemorate the first scientific use of a pitfall trap. Barber trap

The Barber trap (Barber, 1931).

Despite their late addition to the entomological armoury and despite the many criticisms levelled at their use, they continue to be perhaps the most widely used method of insect sampling ever; for example if you enter Beetle* AND pitfall* AND trap*  into the Web of Science you will return 1168 hits since 2000, which is more than one a week.  If you further refine your search to exclude beetle but add insect* you can add another 320 hits. If by some chance you have never used a pitfall trap, then I heartily recommend that you set one or two up in a convenient flower bed or even your lawn, and then sit back and wait and see what exciting beasties are roaming your garden.

Post script

Since this post was published I have discovered an earlier reference to the use of pitfall traps (Hertz, 1927).  Many thanks to Jari Niemelä  of Helsinki University for sending me a copy of the reference and many thanks to my eldest daughter for translating the relevant bit, which follows –  “The traps were made of meticulously cleaned tin cans (the rectangle ones used for e.g.  sardines) dug into the ground so deep that the top of the tin was absolutely level with the ground…… it is an ideal way to catch the beetles; with their careless way of running around, they easily fell into the deathtraps, and had no time to use their wings (if they have any)”.  The phrase deathtraps is particularly fine.  The majority of the paper is about the species he caught in different locations and he highlights the fact that he caught seven very rare species using this method.

So this is now the oldest known reference to the use of pitfall traps in the literature, although he does mention that he was using this method to catch beetles in 1914.  But if anyone comes across an earlier reference do let me know.

 

References

Baars, M.A. (1979) Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia, 41, 25-46.

Barber, H.S. (1931) Traps for cave inhabiting insects.  Journal of the Elisha Mitchell Scientific Society, 46, 259-266.

Gist, C.S. & Crossley, J.D.A. (1973) A method for quantifying pitfall trapsEnvironmental Entomology, 2, 951-952.

Greene, J. (1880) The Insect Hunter’s Companion: Being Instructions for Collecting and Describing Butterflies, Moths, Beetles, Bees, Flies, Etc.  

Hertz, M. (1927) Huomioita petokuoriaisten olinpaikoista.  Luonnon Ystävä, 31, 218-222

Rich, M.C., Gough, L., & Boelman, N.T. (2013) Arctic arthropod assemblages in habitats of differing shrub dominance. Ecography, 36, 994-1003.

Southwood, T.R.E. (1966) Ecological Methods, Chapman & Hall, London.

Wang, X.P., Müller, J., An, L., Ji, L., Liu, Y., Wang, X., & Hao, Z. (2014) Intra-annual variations in abundance and speceis composition of carabid beetles in a temperate forest in Northeast China. Journal of Insect Conservation, 18, 85-98.

Woodcock, B.A. (2005) Pitfall trapping in ecological studies.  Pp 37-57 [In] Insect Sampling in Forest Ecosystems, ed S.R. Leather, Blackwell Publishing, Oxford.

Zmihorski, M., Sienkiewicz, P., & Tryjanowski, P. (2013) Neverending story: a lesson in using sampling efficieny methods with ground beetles. Journal of Insect Conservation, 17, 333-337.

 

Post post script

Pitfall traps are even more versatile than you might think. Mark Telfer has developed a nifty subterranean version http://markgtelfer.co.uk/beetles/techniques-for-studying-beetles/subterranean-pitfall-traps-for-beetles/  and at the opposite end of the spectrum, pitfall traps have also been used in trees to sample spiders (Pinzon & Spence, 2008).

Reference Pinzon, J. & Spence, J. (2008) Performance of two arboreal pitfall trap designs in sampling cursorial spiders from tree trunks.  Journal of Arachnology, 36, 280-286

 

Post post script And for those of you who have had to suffer sitting through the Pokémon movie as I did many years ago, there is also a Pokémon version of the antlion! Pitfall Pokemon

http://bulbapedia.bulbagarden.net/wiki/Trapinch_(Pok%C3%A9mon)

 and don’t forget Winnie the Pooh and his heffalump trap 😉  Hopefully you will use them more carefully than he did. Pitfall trap - Heffalump

9 Comments

Filed under EntoNotes

Effervescent entomologists – MSc Entomology London Natural History Museum Visit 2015

Last Tuesday (February 4th 2015) I was roused from sleep by the strident tones of my mobile phone telling me that “It’s 5 ‘o’ clock, it’s time to get up”.   Just over an hour later I was standing outside a coach ticking names off my list as yawning MSc student entomologists, PhD students and entomological staff  sleepily settled  down for the four-hour journey to London* Happy Days Coach

Artistic licence – it was still dark when we left!  The name of the coach company is particularly apt.

 Just over four hours later we arrived outside the front of the Natural History Museum on Cromwell Road.NHM front

The front of the Natural History Museum London; when I was a child the beauty of the facade was obscured by soot and grime.

Making our way round to the Exhibition Road entrance, we were met by the legendary Max Barclay @coleopterist,  the Collections Manager for Coleoptera and Hymenoptera.  Pausing only to introduce the students to Charles Darwin and to allow them to take Max & Darwin

Max Barclay introduces Darwin to the students

photographs of the now Twittering Dippy the Diplodocus  @NHM_Dippy, Dippy

Dippy the Diploducus, shortly to be replaced by the Blue Whale skeleton. The blue whale skeleton in my opinion has two advantages over Dippy, first it is real, not a model and second it is actually my first ever biological memory, aged 3.

  we entered the first of our scheduled stops, the Coleoptera section. Beetles

Approximately 220 000 drawers of beetles

Here Max enthralled the students with  the magic of beetles large and small. Max enthralling

Max in full flow

We saw a very small  selection of Alfred Russel Wallace’s 8000+ collection, some of Darwin’s beetles and ARW beetles

A very small selection of Wallace’s collection.

some of the beetles collected by botanist Joseph Banks (as Max pointed out he appeared to be only able to collect large and showy specimens, whereas Darwin’s were much smaller and harder to identify.Bank's beetles

Bank’s beetles – large and showy

  We were also privileged to see a beetle collected by palaeaoanthropologist Louis Leakey whilst excavating hominid remains in the Olduvai Gorge. Max & Leakey's beetle

Max relating the story of how Louis Leakey thought he had found a fossil beetle.

 We then moved on to the Hymenoptera; unfortunately Gavin Broad was not available so we did not have the benefit of a specialist to enthrall us although we did see some interesting specimens such as this Tarantula Hawk Wasp.Pepsis

Pepsis heros – Tarantula Hawk

We then broke for lunch before meeting up with, in my opinion, the most entertaining Dipterist in the World, Erica McAlister, also known as @flygirlNHM. Erica and big flies

Erica with some rather large flies.

She showed us bot fly larvae from unexpected hosts, camels, elephants and rhinoceroses whilst regaling us with amusing and risqué anecdotes of fly mating behaviour.Camle bot flies

Camel bot fly larvae

Erica also showed us some large wax models of insects, my favourite being the model of the aphid, Myzus persicae, which was very good indeed and something I would dearly love to have in my possession.  Erica on the other hand was very keen on the model of a Drosophila mutant 😉Erica & wax aphid

A very large aphid!

Then Erica led us into the depths of the museum to the Tank Room to look at some larger animals, or as Erica described them “The Big Pickles”. Tank room

Part of the Tank Room – lots of pickled fish

Some of the pickles were very big indeed.

Giant squid

A very big pickle – giant squid

After looking at some of the specimens that Darwin had collected whilst on the Beagle, we then went upstairs again, on the way looking at the famous cocoon from above, before we Long way down

Sideways view of the cocoon.

entered the world of the little pickles – spiders and their allies, some poisonous, some venomous.  There is a difference, check it out.Solifugid

A Camel spider; a Solifiguid, despite the common name, they are only very distantly related to spiders.

Scorpions

MSc Students and scorpions; big and relatively harmless, small and deadly (not the students). The gloves protect against the preservative, not the possibility of being bitten!

And then sadly, it was time to get back on the coach and make our way back to Shropshire and Harper Adams University.  A great day out, made particularly enjoyable by the obvious passion that Erica and Max have for their insects.  If you ever get the chance to see Max and Erica extolling the virtues of their pet beasties, make sure you do so.  Effervescent, ebullient, enthusiastic and energetic entomologists both.  I am  sure that I speak for all of us who made the trip when I say “Thank you Max” and “Thank you Erica”.

 

Post script

It was only when I was writing this blog post that I realised that this visit was exactly a year after our previous visit.  The other huge benefit of these visits is that it very important to let the students see that you can work as an entomologist in a museum without being male and grey-bearded 😉  In which context it was very nice to bump into one of our ex-students, in fact one from the very first cohort of the MSc in Entomology after our move from Imperial College to Harper Adams (a story for a future post).

Minty

 

Footnote

*My wife (born in London) insists that it is up to London, but as a Yorkshireman this goes against the grain.  As far as I’m concerned London is down south, so for the sake of marital harmony I have gone for to London  😉

8 Comments

Filed under EntoNotes, The Bloggy Blog

Saproxylicphilia – dead wood alive and well

As some of my followers on Twitter will know, I have the habit of when certain so-called general ecology and conservation journals issue their new contents list, of highlighting how few invertebrate papers have been published in that particular issue.  The journal Animal Conservation, has often been the recipient of my Tweets in that they, despite their name, pretty much ignore most of the animal world, concentrating instead on those minority organisms, the vertebrates and then, mainly mammals.

Animal Conservation tweets

I was thus a little surprised when at the beginning of June I received an email from the Editorial Office of Animal Conservation asking me if I would be willing to provide a commentary piece on a paper that would be coming out shortly

From: Elina Rantanen

Sent: 05 June 2013 14:11

To: Simon Leather

Subject: Animal Conservation – Invitation to write a commentary for Feature Paper

 Dear Prof. Leather,

 I am writing on behalf of the Editors of Animal Conservation to enquire whether you would be interested in writing a short commentary on a paper which will be published in our August issue.  The paper (attached) is entitled: ‘Protected areas and insect conservation: questioning the effectiveness of Natura 2000 network for saproxylic beetles in Italy’ by Manuela D’Amen et al. We would be delighted if you would be willing to contribute.

 By way of background, the editors of Animal Conservation select a topical article in each issue, and invite experts in the field to provide short commentaries on the study.  These commentaries are then published alongside the original paper, together with a concluding piece by the original authors.  The intention of the commentaries is to discuss the findings of the study and to draw out some of their wider implications.

 Commentaries can also be used to critique a study and can generate debate although this is not the primary intention.  We normally aim to publish about three commentaries with every highlighted article.  The commentaries are usually about 1,000 words in length, and do not require an abstract.  If you agree, I would need to receive your commentary by 19th June. The commentary will be checked by the Editor of the Feature paper before it is accepted.

 If you would like to see examples of previous commentaries, please visit the Animal Conservation homepage: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1469-1795 where previous featured articles and commentaries are available with free access.

 Please let me know as soon as possible whether or not you will be able to accept this invitation.

 I look forward to hearing from you – it would be great to have you involved.

 Kind regards,

 Elina

 Dr. Elina Rantanen

Editorial Office, Animal Conservation

I was of course hoist with my own petard and had no other choice but to agree.  Actually, I was delighted and grateful to have the opportunity.

Petard cartoon

The paper, by D’Amen and colleagues dealt with the mismatch between the Natura 2000 network and the conservation of saproxylic beetles in Italy.  The authors pointed out that basically saproxylic beetles were badly served by the network in Italy which had been designed with the large charismatic mega-fauna in mind, and not the small things that run the World.  This of course allowed me a platform from which to further highlight yet another example of institutional vertebratism and reiterate my call for a less biased approach to conservation and ecology in general, which I was very happy to do indeed.

It was while I was writing this that I came across a blog post by Jeff Ollerton of Northampton University in which whilst discussing the huge amount of pollination literature that today’s PhD students are faced with, he described a phenomena that he aptly called The Cliff

Now it just so happens that I have recently had a PhD student successfully defend her thesis on saproxylic beetles and their natural enemies.  Her PhD was a follow-up to another one of my former students who investigated the volatiles given off by those fungi that cause the decay in dead and dying trees.  In addition, in my role of Editor-in-Chief of Insect Conservation & Diversity, I have noticed an increasing number of papers on saproxylic insects being submitted to the journal.  Jeff’s article thus stimulated me to see if there was also a cliff effect in the saproxylic literature.  I thus turned to that invaluable source of data, the Web of Knowledge and using the terms saproxylic , and saproxylic  beetles set the search going.   I did indeed find a Cliff effect, albeit slightly later than the pollination one.  The first published item appeared to be in 1976 which is surprising as according to Grove (2002), the term was first coined by Dajoz in France in 1966.  I have, however, so far been unable to find this paper to confirm this assertion.  Apparently, prior to Dajoz, anything that fed on wood, dead or alive, was termed xylophagous or as a xylobiont.  It was perhaps Martin Speight’s ground breaking report of 1989 extolling the importance of the dead wood habitat that caused the first cliff in about 1991.  This was followed by another ten years later or so, and since then there has been a huge increase in interest in the subject.  The incomplete data for 2013 indicate that the trend is still upwards.  Most work appears to be on beetles which given their relative abundance, makes sense.

Saproxylic published   Saproxylic citations

So, yes here we have another example of a step change in a research area.  I wonder how many more examples there are out there and if it is possible to tie them in to a particular government policy or influential publication.

References

Dajoz R. (1966) Ecologie et biologie des coléoptères xylophages de la hêetraie. Vie Milieu 17:525–636

Grove,  S. J. (2002). Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics 33: 1-23.  http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.33.010802.150507?journalCode=ecolsys.1

Speight MCD. 1989. Saproxylic Invertebrates and their Conservation. Strasbourg, Fr: Counc. Eur. 79 pp.

In case you wondered

What is Natura 2000 ?

Natura 2000 is the centrepiece of EU nature & biodiversity policy. It is an EUwide network of nature protection areas established under the 1992 Habitats Directive. The aim of the network is to assure the long-term survival of Europe’s most valuable and threatened species and habitats. It is comprised of Special Areas of Conservation (SAC) designated by Member States under the Habitats Directive, and also incorporates Special Protection Areas (SPAs) which they designate under the 1979 Birds Directive. Natura 2000 is not a system of strict nature reserves where all human activities are excluded. Whereas the network will certainly include nature reserves most of the land is likely to continue to be privately owned and the emphasis will be on ensuring that future management is sustainable, both ecologically and economically.  The establishment of this network of protected areas also fulfills a Community obligation under the UN Convention on Biological Diversity.

http://ec.europa.eu/environment/nature/natura2000/

1 Comment

Filed under EntoNotes