Tag Archives: bird cherry aphids

Data I am never going to publish – A tale of sixty trees

In 1981 I spent a lot of time trudging through snow, cross-country skiing and snow-shoeing my way across the snowy wastes of Finland to snip twigs off bird cherry trees.  This was part of my post-doc which was to develop a forecasting system for the bird cherry-oat aphid, Rhopalosiphum padi.  On returning to the lab I then spent many a happy hour counting how many aphid eggs were nestled in between the buds and the stem on each twig.  It was while doing this that I noticed that some of the twigs were infested with the overwintering larval shields of the bird cherry ermine moth, Yponomeuta evonymellus.  Of course I then started counting them as well 🙂  I noticed that trees with lots of aphid eggs didn’t have very many larval shields and I wondered why. Some later observations from marked trees in Scotland appeared to provide evidence that the aphids and the moths tended to either prefer different trees or perhaps excluded each other.

Negative correlation between moths and aphids – more moths equals fewer aphids and vice versa

Based on these data I hypothesised that the two insects were indirectly competing for resources by altering plant chemistry and/or architecture thus making the trees less or more suitable for egg laying in the autumn (Leather, 1988).  I tested this experimentally when I was working for the Forestry Commission in Scotland using potted bird cherry trees that I defoliated to a lesser or greater extent to see if I could induce changes in foliar quality and tree growth rates that might influence subsequent colonisation by the aphids and moths. As predicted, those trees that had been defoliated, albeit by me and not by moth larvae, were less attractive to aphids in the autumn (Leather, 1993).  These effects were still apparent five years after the beginning of the experiment (Leather, 1995) when I had to desert my trees as I moved to a new position at Imperial College’s Silwood Park campus.

Given that apart from the location, the SE of England, this was my idea of a dream job for life (colleagues at the time included John Lawton, Mike Hassell, Bob May, Stuart McNeill, Mike Way, Brad Hawkins, Shahid Naeem, Mike Hochberg, Chris Thomas to name but a few), I decided to start up two long-term projects to see me through the next 30 years, one observational (my 52 sycamore tree project), the other experimental, a follow up to my bird cherry defoliation experiment.

I went for a simplified design of my earlier experiments, just two defoliation regimes, one to mimic aphid infestation (50%), the other to mimic bird cherry ermine moth defoliation (100%) and of course a non-defoliated control.  I also planted the trees in the ground to better simulate reality.  Using potted plants is always a little suspect and I figured that I would need to do rather a lot of re-potting over the next 30 years 🙂

The grand plan!

I sourced my trees from a Forestry Commission nursery thinking that as the national organisation responsible for tree planting in the UK I could trust the provenance of the trees.  Things didn’t go well from the start.  Having planted my trees in autumn 1992 and established the treatments in the spring of 1993 I discovered that my bird cherry, rather than being from a native provenance (seed origin) were originally from Serbia! Hmm 🙂  It was too late to start again, so I decided to carry on.  After all, bird cherry although widely planted in the SE, has a native distribution somewhat further north and west, which meant I was already operating close to the edge of ‘real life’, so what did an extra 1600 kilometres matter?

The mainly ‘natural’ distribution of bird cherry (left, Leather, 1996) and the current distribution including ‘introduced’ trees https://www.brc.ac.uk/plantatlas/index.php?q=plant/prunus-padus

Next, I discovered that my fence was neither rabbit nor deer proof.  I almost gave up at this point, but having invested a lot of time and energy in setting up the plot I once again decided to carry on. On the plus side, the trees most heavily defoliated and bitten back were mainly from the 100% defoliation treatment, but did give me some negative growth rates in that year.

My original plan was to record height (annually), bird cherry egg numbers (every December), bird cherry ermine moth larval shields (annually), bud burst and leaf expansion once a week, leaf-fall (annually), and once a month, defoliation rates in two ways, number of damaged leaves and an overall estimation of percentage defoliation.  This was a personal project, so no grant funding and no funding for field assistants.  It soon became clear, especially when my teaching load grew, as Imperial started replacing whole organism biologists with theoretical and molecular biologists, and I was drafted in to take on more and more of the whole organism lecturing, that I would not be able to keep both of my long term projects going with the same intensity.  Given the ‘problems’, associated with the bird cherry project, I decided  that I would ditch some of my sampling, bud burst was scored on 21st March every year and defoliation only measured once, in late summer and egg sampling and height recording came to a halt once the trees grew above me (2005)!  This allowed me to carry on the sycamore project as originally intended*.

I kept an eye on the trees until I left Silwood Park in 2012, but by 2006 I was only monitoring bud burst and leaf fall feeling that this might be useful for showing changes in phenology in our ever-warming world.  One regret as I wandered between the then sizeable trees in the autumn of 2012 was that I had not taken a before and after photograph of the plots.  All I have are two poor quality photos, one from 2006, the other from 2012.

The Sixty Tree site April 2006.

The Sixty Tree site April 2010 with a very obvious browse line


So, after all the investment in time, and I guess to a certain extent money (the trees and the failed fencing, which both came out of my meagre start-up funding**), did anything worthwhile come out of the study?

The mean number of Rhopalosiphum padi eggs per 100 buds in relation to defoliation treatment

As a long-time fan of aphid overwintering it was pleasing to see that there was a significant difference not only between years (F= 8.9, d.f. = 9/29, P <0.001), but also between treatments with the trees in the control treatment having significantly more eggs laid on them than the 100% defoliation treatment (F= 9.9, d.f. = 2/ 29, P <0.001 with overall means of 1.62, 1.22 and 0.65 eggs/100 buds).  This also fitted in with the hypothesis that trees that are defoliated by chewing herbivores become less suitable for aphids (Leather, 1988).  I must admit that this was a huge surprise to me as I had thought that as all the trees were attacked by deer the year after the experimental treatments they would all respond similarly, which is why I almost gave up the experiment back in 1994.

Bud burst stage of Prunus padus at Silwood Park on March 21st 1996-2012; by treatment and combined

When it came to budburst there was no treatment effect, but there was a significant trend to earlier budburst as the trees became older which was strongly correlated with warmer springs, although as far as spring temperatures were concerned there was no significant increase with year.

Mean spring temperature (Silwood Park) 1993-2012 and relationship between mean spring temperature and bud bust stage on 21st March.

Mean date of final leaf fall of Prunus padus at Silwood Park 1995-2012; by treatment and combined

At the other end of the year, there was a significant difference between date of final leaf fall between years but no significant difference between treatments.  In retrospect I should have adopted another criterion.  My date for final leaf fall was when the last leaf fell from the tree.  Those of you who have watched leaves falling from trees will know that there are always a few who are reluctant to make that drop to the ground to become part of the recycling process.  Even though they are very obviously dead, they hang there until finally dislodged by the wind.   I should really have used a measure such as last leaf with any pigment remaining.  I am sure that if I could be bothered to hunt down the wind speed data I would find that some sort of correlation.

Mean height (cm) of Prunus padus trees at Silwood Park 1993-2005 and Diameter at Breast Height (DBH) (cm) at the end of 2012

Except for the year after the deer attack, the trees, as expected, grew taller year by year.  There was however, no significant difference between heights reached by 2005 or in DBH at the end of 2012 despite what looked like a widening gap between treatments.

Defoliation scores of Prunus padus at Silwood Park 1993-2004; % leaves damaged and overall defoliation estimates

My original hypothesis that trees that were heavily defoliated at the start of their life would be more susceptible to chewing insects in later life, was not supported.  There was no significant difference between treatments, although, not surprisingly, there was a significant difference between years.  Average defoliation as has been reported for other locations was about 10% (Kozlov et al., 2015; Lim et al., 2015).

Number of Prunus padus trees with severe deer damage

That said, when I looked at the severity of deer attack, there was no effect of year but there was a significant effect of treatment, those trees that had been 100% defoliated in 1993 being most attractive to deer.   In addition, 20% of those trees were dead by 2012 whereas no tree deaths occurred for the control and less severely defoliated treatments.

I confess to being somewhat surprised to find as many significant results as I did from this simple analysis and was momentarily tempted to do a more formal analysis and submit it to a journal.  Given, however, the number of confounding factors, I am pretty certain that I would be looking at an amateur natural history journal with very limited visibility.  Publishing it on my blog will almost certainly get it seen by many more people, and who knows may inspire someone to do something similar but better.

The other reason that I can’t be bothered to do a more formal analysis is that my earlier work on which this experiment was based has not really hit the big time, the four papers in question only accruing 30 cites between them.  Hardly earth shattering despite me thinking that it was a pretty cool idea;  insects from different feeding guilds competing by changing the architecture and or chemsitry of their host plant.  Oh well.  Did anything come out of my confounded experiment or was it a total waste of time?  The only thing published from the Sixty Trees was a result of a totally fortuitous encounter with Marco Archetti and his fascination with autumn colours (Archetti & Leather, 2005), the story of which I have related in a previous post, and which has, in marked contrast to the other papers, had much greater success in the citation stakes 🙂

And finally, if anyone does want to play with the data, I am very happy to give you access to the files.


Archetti, M. & Leather, S.R. (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos, 110, 339-343. 50 cites

Kozlov, M.V., Lanta, V., Zverev, V., & Zvereva, E.L. (2015) Global patterns in background losses of woody plant foliage to insects. Global Ecology & Biogeography, 24, 1126-1135.

Leather, S.R. (1985) Does the bird cherry have its ‘fair share’ of insect pests ? An appraisal of the species-area relationships of the phytophagous insects associated with British Prunus species. Ecological Entomology, 10, 43-56.  14 cites

Leather, S.R. (1988) Consumers and plant fitness: coevolution or competition ? Oikos, 53, 285-288. 10 cites

Leather, S.R. (1993) Early season defoliation of bird cherry influences autumn colonization by the bird cherry aphid, Rhopalosiphum padi. Oikos, 66, 43-47. 11 cites

Leather, S.R. (1995) Medium term effects of early season defoliation on the colonisation of bird cherry (Prunus padus L.). European Journal of Entomology, 92, 623-631. 4 cites

Leather, S.R. (1996) Biological flora of the British Isles Prunus padus L. Journal of Ecology, 84, 125-132.  14 cites

Lim, J.Y., Fine, P.V.A., & Mittelbach, G.G. (2015) Assessing the latitudinal gradient in herbivory. Global Ecology & Biogeography, 24, 1106-1112.



*which you will be pleased to know, is being analysed as part of Vicki Senior’s PhD project, based at the University of Sheffield.

**£10 000 which even in 1992 was not overly-generous.


Filed under EntoNotes, Science writing, Uncategorized

Ideas I had and never followed up

“When I was younger, so much younger than before” I never needed any help to come up with ideas for research topics or papers.   When I was doing my PhD and later as a post-doc, I used to keep a note pad next to my bed so that when I woke up in the middle of night with an idea (which I often did) I could scribble it down and go back to sleep.  (These days sadly, it is my bladder and not ideas that wake me up in the wee small hours 🙂*)

On waking up properly, these ideas, if they still seemed sensible, would  move onto Stage 2, the literature search.  In those days, this was much more difficult than it is now, no Google Scholar or Web of Science then, instead you had to wade though the many hard-copy Abstract series and then get hard copies of the papers of interest.  Once in my hands, either via Inter-library loans or direct from the author, or even photocopied from the journal issue (we did have photocopiers in those days), the papers would be shoved into a handy see-through plastic folder (Stage 3).  Depending on how enthusiastic I was about the idea, I would then either mock-up a paper title page or put the folder in the ‘to deal with later’ pile (Stage 4).   Many of these eventually led on to Stage 5, experiments and published papers.  Others have languished in their folders for twenty or thirty years.

As part of my phased run up to retirement (2021), I have started farming out my long-term publishable (hopefully) data-sets to younger, more statistically astute colleagues and ‘publishing’ less robust, but possibly useful data on my blog site.  I have also, somewhat halfheartedly since the task is monumental, started to go through my old field and lab books that


A monumental collection of data.  The top right picture is my 20-year sycamore data set.  I estimate that there are about 7 million data points in it; of which to date only 1.6 million, give or take a million, are computerised.  I also have a ten-year bird cherry aphid data set from Scotland, waiting to go on the computer, any volunteers?

are not yet computerised.  Whilst doing this I came across some Stage 3 folders, which as you can see from the colour of the paper have languished for some time.


The Forgotten Nine


There were nine forgotten/dismissed proto-papers, the oldest of which, judging by the browning of the paper and my corresponding address, dates from the early 1980s, and is simply titled “What are the costs of reproduction?”.  This appears to have been inspired by a talk given by Graham Bell at a British Ecological Society, Mathematical Ecology Group meeting in 1983.  In case you are wondering, this was one of those meetings supposed to bring theorists and empiricists together.   It didn’t work, neither group felt able to talk to each other 🙂  The idea, inevitably based on aphid data, didn’t bear any fruit, although I do have this graph as a souvenir.  If anyone wants


In those days we used graph paper 🙂

 the data, do let me know.

Slightly later, we find the grandly titled, “Size and phylogeny – factors affecting covariation in the life history traits of aphids”.  This had apparently been worked up from an earlier version of a paper, less grandly, but no less ponderously, titled, “Size and weight: factors affecting the level of reproductive investment in aphids”.  This is based on some basic dissection data from eight aphid species and presents the relationships, or lack of, between adult weight (or surrogate measure), ovariole number, potential fecundity and the number of pigmented embryos.  As far as I can remember these are data that Paul Wellings** and I collected as a follow-up to work we had published from a side project when we were doing our PhDs at the University of East Anglia (Wellings et al., 1980).  The second title was inspired by a paper by Stephen Stearns (Stearns, 1984), who was something of a hero of mine at the time, and was, I guess, an attempt to publish pretty simple data somewhere classier than it deserved 🙂  So this one seems to be a Stage 4, almost Stage 5 idea, and may, if I have time or someone volunteers, actually get published, although I suspect it may only make it to a very minor journal under its original title.

Then we have a real oddity, “Aphids, elephants and oaks: life history strategies re-examined”.  This one as far as I remember, is based on an idea that I had about r- and k-selection being looked at from a human point of view and not the organism’s point of view.  My thesis was that an oak tree was actually r-selected as over its life-time it was more fecund than an aphid 🙂  I suspect this was going to be aimed at the Forum section of Oikos.

The next one, dates from the late-1980s, “Protandry versus protogyny: patterns of occurrence within the Lepidoptera”, and reflects the fact that females of the pine beauty moth, Panolis flammea, on which I was then working, emerge before the males (Leather & Barbour, 1983; Leather, 1984), something not often reported in Lepidoptera.  I wondered what advantage (if any) this gave P. flammea.  I planned this one as a review or forum type paper but never got beyond the title and collecting two references (Robertson, 1987; Zonneveld & Metz, 1991).  I still think this is an interesting idea, but do feel free to have a go yourselves, as again, I suspect that I won’t actually get round to it.

Finishing off my time in Scotland, is a paper simply entitled, “Egg hatch in the bird cherry aphid, Rhopalosiphum padi.” I have ten years of egg hatch data from eight trees waiting to be analysed.  This is almost certainly not worth more than a short note unless I (or a willing volunteer) tie it in with the ten years data on spring and autumn populations on the same trees 🙂 Aphid egg data although not very abundant, is probably not in great demand.  My first published paper (Leather, 1980) was about egg mortality in the bird cherry aphid and 36 years later has only managed to accrue 32 citations, so I guess not an area where one is likely to become famous 🙂

I then have four papers dating from my time as an Associate Member of the NERC Centre for Population Biology at Silwood Park.   The first is titled, “The suitability of British Prunus species as insect host plants” and was definitely inspired by my foray into counting host plant dots as exemplified by the late great Richard Southwood (Leather, 1985, 1986).  I think I was going to look at palatability measures of some sort.

The next is called ‘Realising their full potential: is it important and how many insects achieve it?”  I’m guessing that this was a sort of follow-up to my second most-cited paper ever (Leather, 1988), the story of which you can read here, if at all interested.  Most insects, even those that are pests, die before achieving anywhere near their full reproductive potential, but then so do we humans, and our population continues to grow.  So in answer to the question, I guess not and no it doesn’t matter 🙂

Also linked to insect reproduction is the next paper, which I have followed up with the help of a PhD student, and do hope to submit in the near future, “Queue positions, do they matter”.  As this one may actually see the light of day, I won’t say anything further about it.

And finally, another one about aphid eggs, “Bud burst and egg hatch synchrony in aphids”.  This one was going to be based on my then ten-year sycamore aphid data but is now based on my twenty-year data set and is now in the very capable hands of a PhD student and hopefully will see the light of day next year.

There are also a number of other folders with no titles that are just full of collections of reprints.  I can only guess at what these ideas were so won’t burden you with them.

I mentioned at the beginning of this piece that I don’t wake up in the middle of the night with ideas any more.  As we get older I think there is a tendency to worry that we might run out of ideas, especially when, as we do in the UK, suffer from ludicrously underfunded research councils with very high rejection rates that don’t allow you to resubmit failed grant applications.  It was thus reassuring to see this recent paper that suggests that all is not lost after you hit the grand old age of 30.  That said, I do believe that as you move away from the bench or field, the opportunity to be struck by what you see, does inevitably reduce.  As a PhD student and post-doc you are busy doing whatever it is you do, in my case as an ecological entomologist, counting things, and inevitably you see other things going on within and around your study system, that spark off other ideas.  It was the fear of losing these opportunities as I moved up the academic ladder, which inevitably means, less field and bench time and more time writing grant applications and sitting on committees, that I specifically set aside Monday mornings (very early mornings) to my bird cherry plots and even earlier Thursday mornings to survey my sycamore trees.   Without those sacrosanct mornings I am pretty certain I would have totally lost sight of what is humanly possible to do as a PhD student or post-doc.  This, thankfully for my research group, means that I had, and have, realistic expectations of what their output should be, thus reducing stress levels all round.   As a side benefit I got to go out in the fresh air at least twice a week and do some exercise and at the same time see the wonderful things that were going on around and about my study areas and as a bonus had the chance to get some new ideas.



Leather, S.R. (1984) Factors affecting pupal survival and eclosion in the pine beauty moth, Panolis flammea (D&S). Oecologia, 63, 75-79.

Leather, S.R. (1985) Does the bird cherry have its ‘fair share’ of insect pests ? An appraisal of the species-area relationships of the phytophagous insects associated with British Prunus species. Ecological Entomology, 10, 43-56.

Leather, S.R. (1986) Insect species richness of the British Rosaceae: the importance of host range, plant architecture, age of establishment, taxonomic isolation and species-area relationships. Journal of Animal Ecology, 55, 841-860.

Leather, S.R. (1988) Size, reproductive potential and fecundity in insects: Things aren’t as simple as they seem. Oikos, 51, 386-389.

Leather, S.R. & Barbour, D.A. (1983) The effect of temperature on the emergence of pine beauty moth, Panolis flammea Schiff. Zeitschrift fur Angewandte Entomologie, 96, 445-448.

Robertson, H.G. (1987) Oviposition and site selection in Cactoblastis cactorum (Lepidoptera): constraints and compromises. Oecologia, 73, 601-608.

Stearns, S.C. (1984) The effects of size and phylogeny on patterns of covariation inthe life history traits of lizards and snakes. American Naturalist, 123, 56-72.

Wellings, P.W., Leather , S.R., & Dixon, A.F.G. (1980) Seasonal variation in reproductive potential: a programmed feature of aphid life cycles. Journal of Animal Ecology, 49, 975-985.

Zonneveld, C. & Metz, J.A.J. (1991) Models on butterfly protandry – virgin females are at risk to die. Theoretical  Population Biology, 40, 308-321.


*I hasten to add that I do still have new ideas, they just don’t seem to wake me up any more 🙂

**Now Vice-Chancellor of the University of Wollongong



Filed under Science writing, Uncategorized

Not all aphids have wings

Given that aphids are commonly known as green-fly or black-fly, it might be presumed that all aphids are capable of flight. Although this is almost certainly universal at the species level (but see Post script) it is not true within a species. As I have described in an earlier post aphids are possessed of extremely complex and fascinating (to me at least) life cycles. Depending on the species, either most stages of the life cycle are winged (alate) as adults, e.g. the sycamore aphid Drepanoisphum platanoidis


Sycamore aphid

I couldn’t resist showing you this beautiful picture of an adult sycamore aphid borrowed from the best aphid web site that I know of (see http://influentialpoints.com/Gallery/Drepanosiphum_platanoidis_common_sycamore_aphids.htm)


Other aphid species, such as my favourite, the bird cherry-oat aphid, Rhopalosiphum padi, only produce alate morphs at specific times of year or in response to changes in host plant quality or crowding.


 RhopalosiphumPadi  Rhopalosiphum padi on leaf

Winged (alate) and non-winged (apterous) morphs of Rhopalosiphum padi.

In species such as the sycamore aphid, the only apterous morph tends to be the sexual female or ovipara, which has no need to disperse and after mating lives only long enough to develop and lay its eggs on the bark of sycamore trees.

Sycamore ovip on bark

Ovipara of the sycamore aphid searching for an oviposition site

In those species such as the bird cherry-oat aphid, the winged forms are very different from the non-winged forms, not just in terms of their wings but in their physiology, behaviour and life history traits (Dixon, 1998). The role of the winged morphs is to find new host plants and to start new colonies. They have long antenna, long legs and well-developed and many, sensory organs (rhinaria). They are the dispersal stage, or in the case of winged males, the mate seekers. They respond more readily to host odours; they need to be able to find new host plants at a suitable physiological stage and preferably free of natural enemies. A well-developed olfactory system is thus called for.

If you cut them open (preferably anaesthetizing them first), and remove their ovaries, you will find that they have ovarioles with only a few embryos in each chain and that most of the embryos are not mature i.e. without eye spots. In addition, if you cut open a number of individuals from the same clone you will find that they will not all have the same number of ovarioles. For example, the alate exules (winged forms produced on the secondary host plants )of Rhoaplosiphum padi, the number of ovarioles can range from four to ten (Wellings et al, 1980). This variability of ovariole number in the dispersal morphs of aphids that spend much of their life cycle on ephemeral host plants is quite common (Leather et al 1988).  So why do so many aphid species have variable numbers of ovarioles in their alate morphs?

Shaw (1970), showed that there appeared to be three types of black bean aphid (Aphis fabae) alate exules; migrants, those that flew before depositing nymphs, flyers, those that deposited a few nymphs before flying, and non-flyers, those that stayed and reproduced on their host plant. He postulated that this was an adaptation in response to host quality, the worse state the plant was in the more likely the migrant morph would be produced. Many years later Keith Walters and Tony Dixon (Walters & Dixon, 1983) were able to show that there was a very strong relationship between reproductive investment (number of ovarioles) and flight willingness and ability. The more ovarioles an aphid had, the less likely it was to want to take off and fly, and in addition those with more ovarioles could not fly for as long or as far as those with fewer.

Ovarioles and flight

In other words a trade-off between fecundity and migration. As long distance aphid migration is very costly (very few survive, Ward et al, 1998) it makes sense to have members of your clone spreading the load (risk), from short-distance hops (trivial flights), with the chance that the next door plant might be just as bad as the one left behind and within easy reach of natural enemies, but with a higher chance of survival and reproduction, to long distance migratory flights, with the reduced probability of finding a host plant but with the chance that it will be high in nutrition and low in natural enemies.

What clever beasts aphids are 😉



Dixon, A.F.G. (1998) Aphid Ecology, Second edn. Chapman & Hall, London.

Leather, S.R., Wellings, P.W., & Walters, K.F.A. (1988) Variation in ovariole number within the Aphidoidea. Journal of Natural History, 22, 381-393.

Shaw, M.J.P. (1970) Effects of population density on the alienicolae of Aphis fabae Scop.II The effects of crowding on the expression of migratory urge among alatae in the laboratory. Annals of Applied Biology, 65, 197-203.

Walters, K.F.A. & Dixon, A.F.G. (1983) Migratory urge and reproductive investment in aphids: variation within clones. Oecologia, 58, 70-75.

Ward, S.A., Leather, S.R., Pickup, J., & Harrington, R. (1998) Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts? Journal of Animal Ecology, 67, 763-773.

Wellings, P.W., Leather , S.R., & Dixon, A.F.G. (1980) Seasonal variation in reproductive potential: a programmed feature of aphid life cycles. Journal of Animal Ecology, 49, 975-985.


Post script

It is possible that there are some aphids that never fly – Aphids from the genus Stomaphis have incredibly long mouthparts (they all feed through tree bark), and as far as I can tell from perusal of

Stomaphis query aceris

Roger Blackman and Vic Eastop’s monumental work, alate morphs have never been described (or seen) and even males are apterous.

Blackman, R.L. & Eastop, V.F. (1994) Aphids on the World’s Trees. CABI, Wallingford.


Post post script

For a very detailed and thoughtful review of the ‘decisions’ and costs involved in aphid reproductive and dispersal biology see Ward, S.A. & Dixon, A.F.G. (1984) Spreading the risk, and the evolution of mixed strategies: seasonal variation in aphid reproductive strategies. Advances in Invertebrate Reproduction, 3, 367-386.



Filed under Aphidology, Aphids