Tag Archives: bird cherry

On rarity, apparency and the indisputable fact that most aphids are not pests

I am willing to bet that when most entomologists are out for a walk spend most of their time looking at the ground or the vegetation between the ground and head height. Lepidopterists and odonatologists may be the exceptions that prove the rule, but most of us spend a lot of time looking for things lurking in dung, hiding under stones or bark, scurrying around in the undergrowth or making holes in leaves ūüôā

Tell-tale signs for an entomologist that something is or has been enjoying a meal

I’m an entomologist, I’m trained to look out for signs of insect infestations; curled leaves as in the above picture tell me that almost certainly an aphid and her offspring have been at work, sticky leaves alert me to the fact that there are aphids above me in the canopy of a tree. Leaves with holes tell me that a beetle or caterpillar has been at work. Leaves spun together with a silk web tell me a similar story. Plants with their stems and leaves stripped right back inform me that sawfly, lepidoptera and beetle larvae have been at work. A fancy spiral of brown or white on a leaf tells me that a leafminer has been, or is at work. In some cases the insect may not be there when I see the damage, the curled leaves caused by an aphid or psyllid infestation remain there until leaf fall, the chances of finding a caterpillar feeding on the very obviously shot-holed leaves of a plant are slim.¬† Like all sensible herbivores, the culprit will be in hiding closer to the stem, only sporadically popping out to feed.¬† On the other hand it may have fallen victim to a visually acute predator (bird) that was attracted to the leaf by the tell-tale feeding signs, or been eaten by a predatory insect or¬† have been parasitized by an ichneumonid wasp.¬† Plants are a lot less passive than people think. By producing the equivalent of an immune response they cause the insects to move to different feeding sites to make more holes effectively advertising their presence to potential predators.¬† Simultaneously, the plant sends out chemical signals telling insect predators and parasites that there is a meal or host available. ¬†An herbivore‚Äôs lot is not an easy one.

The Covid-19 crisis means that I have been working from home in a hamlet on the Staffordshire/Shropshire border.  To keep myself reasonably sane and moderately physically healthy I have been treating myself to a lunchtime walk along the bridleways, footpaths and public roads within a 5 km radius of my house. As a result I have become much more familiar with the area. One of the things that has been very obvious, apparent even, is that some plants dominate the roadside verges, cow parsley Anthricus sylvestris being one that really stands

Cow parsley ‚Äď very common and abundant, occurring in huge swathes around Forton and Sutton and in this case and in many other sites along my walks, backed by the equally apparent hawthorn (Crataegusus monogyna) hedge.

out from the crowd at this time of the year. Not only is it very apparent, but it provides a great source of nectar for the spring butterflies such as the Orange Tip and the assorted bumblebees, solitary bees and hoverflies, that despite the anthropogenic pressures put upon them, still manage to make an appearance.  Nettles, as I particularly noticed when having to social distance myself from the sweaty joggers and cyclists taking advantage of the virtually deserted country lanes, also play a prominent role in the roadside plant community. Also very common, but showing a much patchier distribution and occurring in clumps, including in my garden, is the ribwort plantain, Plantago lanceolata, which is yet another so called weed*, that is perfect for pollinators.

Ribwort plantain ‚Äď common but patchy and clumped ‚Äď this clump in my garden where it is safe from forks and herbicides.

Although both the cow parsley and plantain were buzzing with pollinators, they were, and still are at time of writing, singularly devoid of herbivores, including my favourite aphids. Conversely, the odd scattered bird cherries (Prunus  padus) and the solitary self-seeded wild cherry (Prunus avium) in my garden are proudly sporting the characteristic leaf rolls caused by the bird cherry aphid, Rhopaloisphum padi and the cherry black fly, Myzus cerasi respectively.

Note that both these trees were not growing near any of their relatives and were surrounded and overtopped by other plant species, so as far as humans are concerned not very apparent.

This got me to wondering why it was, that, the to me, and presumably other humans, the very obvious cow parsley and plantains, were not covered in plant feeding insects, while the less apparent cherries were heavily infested by their respective aphids.  After all, according to Richard Root, large swathes of monocultures are likely to be easily found and colonised by pests. Plant apparency was first defined by the British born, American based ecologist Paul Feeny in the mid-1970s.

‚ÄúThe susceptibility of an individual plant to discovery by its enemies may be influenced not only by its size, growth form and persistence, but also by the relative abundance of its species within the overall community. To denote the interaction of abundance, persistence and other plant characteristics which influence likelihood of discovery, I now prefer to describe “bound to be found” plants by the more convenient term “apparent”, meaning “visible, plainly seen, conspicuous, palpable, obvious” (Shorter Oxford English Dictionary, 3rd, edition; Webster’s Concise English Dictionary). Plants which are “hard to find” by their enemies will be referred to as “unapparent”, the antonym of apparent (O.E.D. and Webster, loco cit.). The vulnerability of an individual plant to discovery by its enemies may then be referred to as its “apparency”, meaning “the quality of being apparent; visibility” (O.E.D. and Webster, loco cit.). Since animals, fungi and pathogens may use means other than vision to locate their host-plants, I shall consider apparency to mean “susceptibility to discovery” by whatever means enemies may employ‚ÄĚ Feeny (1976).

So, even though cow parsley is highly visible and apparent to us humans, and their pollinators, because it is an annual and thus ephemeral within the landscape, it is not necessarily apparent to the herbivores that want to feed on it. Conversely, trees, such as bird cherry, although not necessarily apparent to us, are apparent to insect herbivores because they are large and long-lived. How does this affect the way in which plants avoid being found and eaten by insect herbivores?

Peter Price, another British born American based ecologist very neatly summarised Paul’s hypothesis as follows. 

Long-lived trees which are bound to be found by herbivores, invest heavily in costly chemical defence with broad-spectrum efficacy.   These quantitative defences are expensive but the cost is tolerable for a long-lived plant.  Short-lived plants are less easily detected by herbivores, and their best defence is being hard to find in patchy and ephemeral sites.  Low cost defences are effective against generalist herbviores should plants be found.  Instead of tannins and other digestibility reducers found as defences in long-lived plants, short-lived plants have evolved with mustard oils (glucosinolates) in crucifers, for example, alkaloids in the potato family, furanocoumarins in the carrot family (Price, 2003).

All I can say is that the quantitative defences of the trees don‚Äôt seem to be doing as good a job as the less expensive ones of the cow parsley, plantains and nettles.¬† As an aside, it turns out that although both cow parsley and plantain have a lot of medicinal uses, their chemistry does include some insecticides (Adler et al., 1995; Milovanovic et al., 1996). Cheap and cheerful seems to be the answer for an herbivore-free life in this case ūüôā Earlier I referred to cow parsley and plantains as being common.¬† What does that mean? According to Wikipedia (where else would I go?),

 “Common species and uncommon species are designations used in ecology to describe the population status of a species. Commonness is closely related to abundance. Abundance refers to the frequency with which a species is found in controlled samples; in contrast, species are defined as common or uncommon based on their overall presence in the environment. A species may be locally abundant without being common.

However, “common” and “uncommon” are also sometimes used to describe levels of abundance, with a common species being less abundant than an abundant species, while an uncommon species is more abundant than a rare species.‚ÄĚ

In the UK we have a conservation designation, Sites of Special Scientific Interest, the criteria for selection which can be found here. To save you the trouble of reading the whole document, the way in which rarity and scarcity are defined is as follows.

Nationally Rare (15 or fewer UK hectad (10 km squares) records)

Nationally Scarce – Notable A (31-100 UK hectad records),

Nationally Scarce – Notable B (16-30 hectad records.

Local ‚Äď (101-300 UK hectad records)

Okay, so what has all this to do with aphids and their pest status? As you all probably know by now I love aphids; as far as I am concerned, where insects are concerned, they are the bee’s knees**.

Unfortunately, aphids get a terrible press, most of it, in my opinion, undeserved.

Just a couple of examples of aphids getting a biblically bad press.

A few years ago, I wrote a short piece about the fact that only a minority of the so far 5600 or so aphids described, are pests, and many are very rare. The cover of this issue of New Scientist from 1977, which appeared a few months after I joined the group, very nicely sums up the question that we really ought to be asking. Here I have to confess that the article from our lab (McLean et al., 1977), made the case for aphids being pests, and it was the late Denis Owen who defended aphids (Owen, 1977).

Tony Dixon’s cereal aphid research group (of which I was proud to be a member) got more than just a mention in this issue.

Two plants that I have a particular interest in are sycamore and bird cherry, mainly because of their aphids, but in the case of the bird cherry, I love its flowers.  Now, although both have very similar distributions and occurrences to cow parsley and ribwort plantain, ubiquitous, they are much easier

Distribution of cow parsley, ribwort plantain, and sycamore and bird cherry in the British Isles (Atlas of the British Flora)

to find aphids on than both cow parsley and plantain.  On my daily walks during which I pass countless cow parsley and plantain plants, I have, so far, only found one cow parsley with aphids on and not a single plantain has shown any signs of aphid infestation . I have also, only found one nettle plant with Microlophium carnosum on it.  Cow parsley has a number of aphid species that use it as a secondary host migrating there from willows or hawthorns. Plantains also serve as host plants to aphids, some such as Dysaphis plantaginea host alternate, others such as Aphis plantaginis, do not. The latter species, if present, is almost always ant attended (Novgorodova & Gavrilyuk, 2012), which, if you know what you are looking for, makes it easy to spot.  I know what to look for and so far, have not found any! Nettles are also very common in the roadside verges, and they too have aphids that love them, Microlophium carnosum and Aphis urticata, the former a favourite prey of ants, the latter, farmed by the ants.  So far this year I have only found one small colony of M. carnosum, and believe me, I have been looking.

So what about the trees? Sycamores are a common sight on my walks, occurring both as hedges and as solitary trees or sometime in small groups. Almost all the large trees have sycamore aphids, Drepanosiphum platanoidis feeding on their leaves, and many have dense colonies of the maple aphid, Periphyllus testudinaceus, some with ants in attendance. Bird cherry is not as common on my walks and where I have found it, they have been small trees or shrubs usually on their own, and surrounded by other woody plants. Without exception, all have been conspicuously infested by the bird-cherry oat aphid.  To summarise, we have common plants that support aphids that are not regarded as rare, but find startlingly different levels of abundance of them here in Staffordshire, and in my experience, elsewhere.  At the same time that I have been actively searching for aphids, six species of butterfly that the Woodland Trust lists as common, have been hard to miss.  In order of sightings these are the Orange Tip, the Peacock, the Small Tortoiseshell, the Speckled Wood, the Holly Blue and the Brimstone, two of which, the Peacock and the Small Tortoiseshell, being nettle feeders as larvae. Despite the abundance of nettles in the hedgerows, So far I have only seen one small colony of Small Tortoiseshell larvae on the of nettles. I am, at this juncture, unable to resist mentioning that adults of the Holly Blue feed on aphid honeydew J Going back to my original point, the fact that I have seen more butterflies than aphids doesn’t necessarily mean that the aphids are less abundant, just less apparent.

There are at least 614 species of aphid in the UK (Bell et al., 2015). I am not sure how many I have seen, I stopped keeping a personal tick list many years ago, but I would guess that I have seen about half of them. ¬†I like aphids, I look for aphids, but there are many ‚Äėcommon‚Äô species that I have never seen. I have, however, seen some of the rare ones. Four that stand out in my memory are Monaphis antnenata, Stomapahis graffii, Myzocallis myricae and Maculolachnus submacula. The first feeds on the upper surface of birch leaves (Hopkins & Dixon, 1997) and was shown to me by the late Nigel Barlow, when he was on a sabbatical at Silwood Park. Stomaphis graffii which feeds under the bark of sycamores and maples and is ant attended, was shown to me by an MSc student, Andrew Johnson, also at Silwood Park. ¬†Myzocallis myricae, the bog myrtle aphid, only found on bog myrtle (Myrica gale) (Hopkins et al., 2002), I saw in the Highlands of Scotland, when Tony Dixon asked me to stop the car so he could go and look at a clump of bog myrtle he had spotted as we drove along between field sites. The giant rose aphid, Maculolachnus submacula, I saw in my garden in Norwich (84 Earlham Road) when I was a PhD student at the University of East Anglia.¬† I only found it because I wondered why there was an ant nest reaching halfway up one of my roses.¬† When I looked, I found that they were farming the aphids that were feeding on the lower stems.

It is important to remember that most aphids are host-specific, some feeding only on a single plant species, others being confined to a single genus with only a minority having a wide host range*** and considered pests (Dixon, 1998). Given this, it is obvious that aphids with rare host plants are also going to be rare (Hopkins et al., 2002).  Many aphids are also very fussy about their niche, either feeding on a very particular part of a plant or having a very close association with a particular species of ant.  Looking at the aphids that the two Bobs (Influential Points it seems that aphids that are rare  are also ant-attended.  Given, that many ant-attended aphids aren’t rare it would seem an interesting area to pursue. Perhaps it is the degree of ant-attendance, i.e. facultative versus obligate that is the key factor?

If you look at the list of species of insects that are regarded as endangered and worthy of conservation in the UK, the overwhelming impression is that unless they are big and pretty they don’t get a look in.  Needless to say, despite their beauty and fascinating life styles, no aphids are included in the list L

We really should be conserving aphids, not squashing them. Many provide important nutrition for ants and other pollinators, honeydew.  They are an important source of food for insects and birds (Cowie & Hinsley, 1988).  Aphids also help plants grow by feeding mycorrhizae with their honeydew (Owen, 1980; Milcu et al., 2015). Finally, as aphids are so host specific using the presence of uncommon species in suction traps could help identify sites with rare plants.

Aphids, rare, useful and much maligned, time to rethink their role.

 

References

Adler, L.S., Schmitt, J. & Bowers, M.D. (1995) Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia, 101, 75-85.

Bell, J.R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., Shortall, C.R., Taylor, M.S., Verier, P. & Harrington, R. (2015) Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. Journal of Animal Ecology, 84, 21-34.

Cowie, R.J. & Hinsley, S.A. (1988) Feeding ecology of great tits (Parus major) and blue tits (Parus caeruleus), breeding in suburban gardens. Journal of Animal Ecology, 57, 611-626.

Dixon, A.F.G. (1998) Aphid Ecology. Chapman & Hall, London.

Feeny, P. (1976) Plant apparency and chemical defence. Recent Advances in Phytochemistry, 10, 1-40.

Hopkins, G.W. & Dixon, A.F.G. (1997) Enemy-free space and the feeding niche of an aphid. Ecological Entomology, 22, 271-274.

Hopkins, G.W., Thacker, J.I.T., Dixon, A.F.G., Waring, P. & Telfer, M.G. (2002) Identifying rarity in aphids: the importance of host plant range. Biological Conservation, 105, 293-307.

McLean, I., Carter, N. & Watt, A. (1977) Pests out of Control. New Scientist, 76, 74-75.

Milcu, A., Bonkowski, H., Collins, C.M. & Crawley, M.J. (2015) Aphid honeydew-induced changes in soil biota can cascade up to tree crown architecture. Pedobiologia, 58, 119-127.

Milovanovic, M., Stefanovic, M., Djermanovic, V., & Milovanovic, J. (1996).¬†Some chemical constituents of Anthriscus sylvestris. Journal of Herbs, Spices & Medicinal Plants, 4, 17‚Äď22.¬†Eugenol ‚Äď insecticide

Novgorodova, T.A. & Gavrilyuk, A.V. (2012). The degree of protection different ants (Hymenoptera: Formicidae) provide aphids (Hemiptera: Aphididae) against aphidophages European Journal of Entomology, 109, 187-196.

Owen, D.F. (1977) Are aphids really plant pests? New Scientist, 76, 76-77.

Owen, D.F. (1980) How plants may benefit from the animals that eat them. Oikos, 35, 230-235.

Price, P.W. (2003) Macroecological Theory on Macroecological Patterns, Cambridge University Press, Cambridge.

Thacker, J.I., Hopkins, G.W. & Dixon, A.F.G. (2006) Aphids and scale insects on threatened trees: co-extinction is a minor threat. Oryx, 40, 233-236.

Uusitalo, M. (2004) European Bird Cherry (Pruns padus L). A Biodiverse Wild Plant for Horticulture. MTT Agrifood Research Finland, Jokioinen.

** https://en.wiktionary.org/wiki/the_bee%27s_knees    

***Hugh Loxdale however, would argue that all insects are specialists and that so called polyphagous species are, in reality, cryptic specialist species (Loxdale, H.D., Lushai, G. & Harvey, J.A. (2011) The evolutionary improbablity of ‘generalism’ in nature, with special reference to insects. Biological Journal of the Linnean Society, 103, 1-18.)

 

5 Comments

Filed under Aphidology, Aphids

Satiable curiosity – side projects are they worthwhile?

I‚Äôve been meaning to write this one for quite a while.¬† It was stimulated by two posts, one from the incredibly prolific Steve Heard, the other by the not quite so prolific, but equally interesting,¬† Manu Saunders.¬† First off, what is a side project?¬† To me, a side project is one that is not directly funded by a research council or other funding agency or, in some cases, one that you do in your spare time, or to the horror of some line-managers, is not strictly in your job description ūüôā The tyranny of modern research funding dictates that projects must have specific research questions and be accompanied by hypotheses and very specific predictions; most proposals I referee, even contain graphs with predicted results and almost all have ‚Äėpreliminary data‚Äô to support their applications.¬†¬† This is not necessarily a bad thing but to directly quote Manu Saunders from her blog post

“Whittaker‚Äôs (1952) study of ‚Äėsummer foliage insect communities in the Great Smoky Mountains‚Äô is considered one of the pioneer studies of modern community ecology methods. The very short Introduction starts with the sentence ‚ÄúThe study was designed to sample foliage insects in a series of natural communities and to obtain results of ecological significance from the samples.‚ÄĚ No ‚Äúspecific research questions‚ÄĚ and the hypotheses and predictions don‚Äôt appear until the Discussion‚ÄĚ Sounds like bliss.

The central ethos of my research career which began in 1977, can be summed up by this quotation uttered by the character ‚ÄėDoc‚Äô in John Steinbeck‚Äôs novel Sweet Thursday ‚ÄúI want take everything I‚Äôve seen and thought and learned and reduce them and relate them and refine them until I have something of meaning, something of use‚ÄĚ (Steinbeck, 1954).* The other thing that has driven me for as long as I can remember, and why I ended up where I am,¬† is something I share with Rudyard Kipling‚Äôs Elephant Child, and that is a ‚Äúsatiable curiosity‚ÄĚ:-) Something that has always frustrated me, is that, in the UK at least, most funded research tends to be of a very short duration, usually three years, often less than that**, and if you are very lucky, maybe five years. ¬†If you work on real life field populations, even if you work on aphids, these short term projects are not really very useful; laboratory work is of course a different matter.

I got my first ‚Äėpermanent‚Äô job in 1982 working for UK Forestry Commission Research based at their Northern Research Station (NRS) just outside Edinburgh.¬† My remit initially was to work on the pine beauty moth, Panolis flammea and finally, on the large pine weevil, Hylobius abietis.¬† As a committed aphidophile, I was determined, job description or not, to carry on working with aphids. I decided that the easiest and most useful thing to do was to set up a long-term field study and follow aphid populations throughout the year.¬† My PhD was on the bird cherry-oat aphid, Rhopalosiphum padi, a host alternating aphid, the primary host of which is the bird cherry, Prunus padus, with which¬† Scotland is very well supplied, and fortuitously, just down the road from NRS was Roslin Glen Nature Reserve with a nice healthy population of bird¬† cherry trees.¬† I chose ten suitable trees and started what was to become a ten-year once a week, lunch time counting and recording marathon.¬† I also decided to repeat a study that my PhD supervisor, Tony Dixon had done, record the populations of the sycamore aphid, Drepanosiphum platanoidis.¬† In the grounds of NRS were five adjacent sycamore tree, Acer pseudoplatanus, and these became my early morning study subjects, also once a week. I had no articulated hypotheses, my only aim was to count and record numbers and life stages and anything else I might see. Anathema to research councils but exactly what Darwin did ūüôā

Although it was a ‚Äėpermanent‚Äô job, after ten years I moved to Imperial College at Silwood Park and immediately set up a new, improved version of my sycamore study, this time a once weekly early morning*** walk of 52 trees in three transects and with much more data collection involved, not just the aphids, their natural enemies and anything else I found and on top of all that, the trees themselves came in for scrutiny, phenology, growth, flowering and fruiting, all went into my data sheets.¬† I also set up a bird cherry plot, this time with some hypotheses articulated ūüôā

As a result of my weekly walk along my sycamore transects, a few years later I set up yet another side project, this time an experimental cum observational study looking at tree seedling survival and colonisation underneath different tree canopies. At about the same time, initially designed as a pedagogical exercise, I started my study of the biodiversity of Bracknell roundabouts.

One might argue that most undergraduate and MSc research projects could also come under the heading of side projects, but I think that unless they were part of a long term study they aren’t quite the same thing, even though some of them were published.  So, the burning question, apart from the benefits of regular exercise, was the investment of my time and that of my student helpers and co-researchers worth it scientifically?

Side project 1.  Sycamore aphids at the Northern Research Station, 1982-1992

I collected a lot of aphid data, most of which remains, along with the data from Side project 2, in these two notebooks, waiting to be entered into a spreadsheet.  I also collected some limited natural enemy data, presence of aphid mummies and numbers killed by entomopathogenic fungi.  Tree phenological data is limited to bud burst and leaf fall and as I only sampled five trees I’m not sure that this will ever amount to much, apart from perhaps appearing in my blog or as part of a book.  Nothing has as yet made it into print, so a nil return on investment.

Raw data ‚Äď anyone wanting to help input into a spreadsheet, let me know ūüôā Also includes the data for Side project 2

 

Side project 2.  Rhopalosiphum padi on Prunus padus at Roslin Glen Nature Reserve 1982-1992

I was a lot more ambitious with this project, collecting lots of aphid and natural enemy data and also a lot more tree phenology data, plus noting the presence and counting the numbers of other herbivores.  I have got some of this, peak populations and egg counts in a spreadsheet and some of it has made it to the outside world (Leather, 1986, 1993: Ward et al., 1998).  According to Google Scholar, Ward et al., is my 6th most cited output with, at the time of writing, 127 citations, Leather (1993) is also doing quite well with 56 citations, while Leather (1986) is much further down the list with a mere 38 citations.  I have still not given up hope of publishing some of the other aphid data.  I mentioned that I also recorded the other herbivores I found, one was a new record for bird cherry (Leather, 1989), the other, the result of a nice student project on the bird cherry ermine moth (Leather & MacKenzie, 1994).  I would, I think, be justified in counting this side project as being worthwhile, despite the fact that I started it with no clear hypotheses and the only aim to count what was there.

 

Side project 3.  Everything you wanted to know about sycamores but were afraid to ask 1992-2012

As side projects go this was pretty massive.¬† Once a week for twenty years, me and on some occasions, an undergraduate research intern, walked along three transects of 52 sycamore trees, recording everything that we could see and count and record, aphids, other herbivores, natural enemies and tree data, including leaf size, phenology, height, fruiting success and sex expression.¬† My aim was pretty similar to that of Whittaker‚Äôs i.e.¬†¬† ‚Äú‚Ķto sample foliage insects in a series of natural communities and to obtain results of ecological significance from the samples‚Ä̬† truly a mega-project.¬† I once calculated that there are counts from over 2 000 000 leaves which scales up to something like 10 000 000 pieces of data, if you conservatively estimate five data observations per leaf. Quite a lot of the data are now computerized thanks to a series of student helpers and Vicki Senior, currently finishing her PhD at Sheffield University, but certainly not all of it. In terms of output, only two papers so far (Wade & Leather, 2002; Leather et al., 2005), but papers on the winter moth, sycamore and maple aphids and orange ladybird are soon to be submitted.¬† On balance, I think that this was also worthwhile and gave me plenty of early morning thinking time in pleasant surroundings and a chance to enjoy Nature.

The sycamore project ‚Äď most of the raw data, some of which still needs to be computerised ūüôā

 

Side project 5. Sixty bird cherry trees 1993-2012

This project has already featured in my blog in my Data I am never going to publish series and also in a post about autumn colours and aphid overwintering site selection.  Suffice to say that so far, thanks to my collaborator Marco Archetti, two excellent papers have appeared (Archetti & Leather, 2005; Archetti et al., 2009), the latter of which is my third most cited paper with 101 cites to date and the former is placed at a very respectable 21st place.  I don’t really see any more papers coming out from this project, but I might get round to writing something about the study as a whole in a natural history journal. On balance, even though only two papers have appeared from this project, I count this as having been a very worthwhile investment of my time.

All now in a spreadsheet and possibly still worthwhile delving into the data

 

Side project 5.¬† Urban ecology ‚Äď Bracknell roundabouts 2002-2012

This started as a pedagogical exercise, which will be the subject of a blog post in the not too distant future. The majority of the field work was done by undergraduate and MSc students and in the latter years spawned a PhD student, so a side project that became a funded project ūüôā To date, we have published seven papers from the project (Helden & Leather, 2004, 2005; Leather & Helden, 2005ab; Helden et al., 2012; Jones & Leather, 2012; Goodwin et al., 2017) and there are probably two more to come.¬† Definitely a success and a very worthwhile investment of my time.¬† The story of the project is my most requested outreach talk so also gives me the opportunity to spread the importance of urban ecology to a wider audience.

The famous roundabouts ‚Äď probably the most talked and read about roundabouts in the world ūüôā Sadly Roundabout 1 i n o longer with us; it was converted into a four-way traffic light junction last year ūüė¶

 

Side project 6. ¬†Testing the Janzen-Connell Hypothesis ‚Äď Silwood Park, 2005-2012

I mentioned this project fairly recently so will just link you to it here.  So far only one paper has come out of this project (Pigot & Leather, 2008) and I don’t really see me getting round to doing much more than producing another Data I am never going to publish article, although it does get a passing mention in the book that I am writing with former colleagues Tilly Collins and Patricia Reader.  It also gave undergraduate and MSc project students something to do.  Overall, this just about counts as a worthwhile use of my time.

Most of this is safely in a spreadsheet but the data in the notebooks still needs inputting

According to my data base I have published 282 papers since 1980 which given that I have supervised 52 PhD students, had 5 post-docs, and, at a rough estimate, supervised 150 MSc student projects and probably 200 undergraduate student projects doesn‚Äôt seem to be very productive ūüė¶ Of the 282 papers, 125 are from my own projects, which leaves 139 papers for the post-docs and PhD students and 17 from the side projects.¬† Three of the papers published from the side projects were by PhD students, so if I remove them from the side projects that gives an average of 2.3 papers per side project and 2.4 papers per post-doc and PhD student.¬† ¬†So, in my opinion, yes, side projects are definitely worth the investment.

 

References

Archetti, M. & Leather, S.R. (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos, 110, 339-343.

Archetti, M., Döring, T.F., Hagen, S.B., Hughes, N.M., Leather, S.R., Lee, D.W., Lev-Yadun, S., Manetas, Y., Ougham, H.J., Schaberg, P.G., & Thomas, H. (2009) Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends in Ecology & Evolution, 24, 166-173.

Goodwin, C., Keep, B., & Leather, S.R. (2017) Habitat selection and tree species richness of roundabouts: effects on site selection and the prevalence of arboreal caterpillars. Urban Ecosystems, 19, 889-895.

Helden, A.J. & Leather, S.R. (2004) Biodiversity on urban roundabouts – Hemiptera, management and the species-area relationship. Basic and Applied Ecology, 5, 367-377.

Helden, A.J. & Leather, S.R. (2005) The Hemiptera of Bracknell as an example of biodiversity within an urban environment. British Journal of Entomology & Natural History, 18, 233-252.

Helden, A.J., Stamp, G.C., & Leather, S.R. (2012) Urban biodiversity: comparison of insect assemblages on native and non-native trees.  Urban Ecosystems, 15, 611-624.

Jones, E.L. & Leather, S.R. (2012) Invertebrates in urban areas: a review. European Journal of Entomology, 109, 463-478.

Leather, S.R. (1986) Host monitoring by aphid migrants: do gynoparae maximise offspring fitness? Oecologia, 68, 367-369.

Leather, S.R. (1989) Phytodecta pallida (L.) (Col., Chrysomelidae) – a new insect record for bird cherry (Prunus padus). Entomologist’s Monthly Magazine, 125, 17-18.

Leather, S.R. (1993) Overwintering in six arable aphid pests: a review with particular relevance to pest management. Journal of Applied Entomology, 116, 217-233.

Leather, S.R. & Helden, A.J. (2005) Magic roundabouts?  Teaching conservation in schools and universities. Journal of Biological Education, 39, 102-107.

Leather, S.R. & Helden, A.J. (2005) Roundabouts: our neglected nature reserves? Biologist, 52, 102-106.

Leather, S.R. & Mackenzie, G.A. (1994) Factors affecting the population development of the bird cherry ermine moth, Yponomeuta evonymella L. The Entomologist, 113, 86-105.

Leather, S.R., Wade, F.A., & Godfray, H.C.J. (2005) Plant quality, progeny sequence, and the sex ratio of the sycamore aphid, Drepanoisphum platanoidis. Entomologia experimentalis et applicata, 115, 311-321.

Pigot, A.L. & Leather, S.R. (2008) Invertebrate predators drive distance-dependent patterns of seedling mortality in a temperate tree Acer pseudoplatanus. Oikos, 117, 521-530.

Steinbeck, J. (1954) Sweet Thursday, Viking Press, New York, USA.

Wade, F.A. & Leather, S.R. (2002) Overwintering of the sycamore aphid, Drepanosiphum platanoidis. Entomologia experimentalis et applicata, 104, 241-253.

Ward, S.A., Leather, S.R., Pickup, J., & Harrington, R. (1998) Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts? Journal of Animal Ecology, 67, 763-773.

Whittaker, R.H. (1952) A Study of summer foliage insect communities in the Great Smoky Mountains. Ecological Monographs, 22, 1-44.

 

*

I was so impressed by this piece of philosophy that it is quoted in the front of my PhD thesis ūüôā

**

My second post-doc was only for two years.

***

You may wonder why I keep emphasising early morning in relation to surveying sycamore aphids.  Sycamore aphids are very easy to disturb so it is best to try and count them in the early morning before they have a chance to warm up and become flight active.

 

10 Comments

Filed under EntoNotes, Roundabouts and more

Data I am never going to publish ‚Äď A tale of sixty trees

In 1981 I spent a lot of time trudging through snow, cross-country skiing and snow-shoeing my way across the snowy wastes of Finland to snip twigs off bird cherry trees.¬† This was part of my post-doc which was to develop a forecasting system for the bird cherry-oat aphid, Rhopalosiphum padi.¬† On returning to the lab I then spent many a happy hour counting how many aphid eggs were nestled in between the buds and the stem on each twig.¬† It was while doing this that I noticed that some of the twigs were infested with the overwintering larval shields of the bird cherry ermine moth, Yponomeuta evonymellus. ¬†Of course I then started counting them as well ūüôā ¬†I noticed that trees with lots of aphid eggs didn’t have very many larval shields and I wondered why. Some later observations from marked trees in Scotland appeared to provide evidence that the aphids and the moths tended to either prefer different trees or perhaps excluded each other.

Negative correlation between moths and aphids ‚Äď more moths equals fewer aphids and vice versa

Based on these data I hypothesised that the two insects were indirectly competing for resources by altering plant chemistry and/or architecture thus making the trees less or more suitable for egg laying in the autumn (Leather, 1988).  I tested this experimentally when I was working for the Forestry Commission in Scotland using potted bird cherry trees that I defoliated to a lesser or greater extent to see if I could induce changes in foliar quality and tree growth rates that might influence subsequent colonisation by the aphids and moths. As predicted, those trees that had been defoliated, albeit by me and not by moth larvae, were less attractive to aphids in the autumn (Leather, 1993).  These effects were still apparent five years after the beginning of the experiment (Leather, 1995) when I had to desert my trees as I moved to a new position at Imperial College’s Silwood Park campus.

Given that apart from the location, the SE of England, this was my idea of a dream job for life (colleagues at the time included John Lawton, Mike Hassell, Bob May, Stuart McNeill, Mike Way, Brad Hawkins, Shahid Naeem, Mike Hochberg, Chris Thomas to name but a few), I decided to start up two long-term projects to see me through the next 30 years, one observational (my 52 sycamore tree project), the other experimental, a follow up to my bird cherry defoliation experiment.

I went for a simplified design of my earlier experiments, just two defoliation regimes, one to mimic aphid infestation (50%), the other to mimic bird cherry ermine moth defoliation (100%) and of course a non-defoliated control.¬† I also planted the trees in the ground to better simulate reality.¬† Using potted plants is always a little suspect and I figured that I would need to do rather a lot of re-potting over the next 30 years ūüôā

The grand plan!

I sourced my trees from a Forestry Commission nursery thinking that as the national organisation responsible for tree planting in the UK I could trust the provenance of the trees.¬† Things didn‚Äôt go well from the start.¬† Having planted my trees in autumn 1992 and established the treatments in the spring of 1993 I discovered that my bird cherry, rather than being from a native provenance (seed origin) were originally from Serbia! Hmm ūüôā ¬†It was too late to start again, so I decided to carry on.¬† After all, bird cherry although widely planted in the SE, has a native distribution somewhat further north and west, which meant I was already operating close to the edge of ‚Äėreal life‚Äô, so what did an extra 1600 kilometres matter?

The mainly ‚Äėnatural‚Äô distribution of bird cherry (left, Leather, 1996) and the current distribution including ‚Äėintroduced‚Äô trees https://www.brc.ac.uk/plantatlas/index.php?q=plant/prunus-padus

Next, I discovered that my fence was neither rabbit nor deer proof.  I almost gave up at this point, but having invested a lot of time and energy in setting up the plot I once again decided to carry on. On the plus side, the trees most heavily defoliated and bitten back were mainly from the 100% defoliation treatment, but did give me some negative growth rates in that year.

My original plan was to record height (annually), bird cherry egg numbers (every December), bird cherry ermine moth larval shields (annually), bud burst and leaf expansion once a week, leaf-fall (annually), and once a month, defoliation rates in two ways, number of damaged leaves and an overall estimation of percentage defoliation.¬† This was a personal project, so no grant funding and no funding for field assistants.¬† It soon became clear, especially when my teaching load grew, as Imperial started replacing whole organism biologists with theoretical and molecular biologists, and I was drafted in to take on more and more of the whole organism lecturing, that I would not be able to keep both of my long term projects going with the same intensity.¬† Given the ‚Äėproblems‚Äô, associated with the bird cherry project, I decided¬† that I would ditch¬†some of my sampling, bud burst was scored on 21st March every year and defoliation only measured once, in late summer and egg sampling and height recording came to a halt once the trees grew above me (2005)!¬† This allowed me to carry on the sycamore project as originally intended*.

I kept an eye on the trees until I left Silwood Park in 2012, but by 2006 I was only monitoring bud burst and leaf fall feeling that this might be useful for showing changes in phenology in our ever-warming world.  One regret as I wandered between the then sizeable trees in the autumn of 2012 was that I had not taken a before and after photograph of the plots.  All I have are two poor quality photos, one from 2006, the other from 2012.

The Sixty Tree site April 2006.

The Sixty Tree site April 2010 with a very obvious browse line

 

So, after all the investment in time, and I guess to a certain extent money (the trees and the failed fencing, which both came out of my meagre start-up funding**), did anything worthwhile come out of the study?

The mean number of Rhopalosiphum padi eggs per 100 buds in relation to defoliation treatment

As a long-time fan of aphid overwintering it was pleasing to see that there was a significant difference not only between years (F= 8.9, d.f. = 9/29, P <0.001), but also between treatments with the trees in the control treatment having significantly more eggs laid on them than the 100% defoliation treatment (F= 9.9, d.f. = 2/ 29, P <0.001 with overall means of 1.62, 1.22 and 0.65 eggs/100 buds).  This also fitted in with the hypothesis that trees that are defoliated by chewing herbivores become less suitable for aphids (Leather, 1988).  I must admit that this was a huge surprise to me as I had thought that as all the trees were attacked by deer the year after the experimental treatments they would all respond similarly, which is why I almost gave up the experiment back in 1994.

Bud burst stage of Prunus padus at Silwood Park on March 21st 1996-2012; by treatment and combined

When it came to budburst there was no treatment effect, but there was a significant trend to earlier budburst as the trees became older which was strongly correlated with warmer springs, although as far as spring temperatures were concerned there was no significant increase with year.

Mean spring temperature (Silwood Park) 1993-2012 and relationship between mean spring temperature and bud bust stage on 21st March.

Mean date of final leaf fall of Prunus padus at Silwood Park 1995-2012; by treatment and combined

At the other end of the year, there was a significant difference between date of final leaf fall between years but no significant difference between treatments.  In retrospect I should have adopted another criterion.  My date for final leaf fall was when the last leaf fell from the tree.  Those of you who have watched leaves falling from trees will know that there are always a few who are reluctant to make that drop to the ground to become part of the recycling process.  Even though they are very obviously dead, they hang there until finally dislodged by the wind.   I should really have used a measure such as last leaf with any pigment remaining.  I am sure that if I could be bothered to hunt down the wind speed data I would find that some sort of correlation.

Mean height (cm) of Prunus padus trees at Silwood Park 1993-2005 and Diameter at Breast Height (DBH) (cm) at the end of 2012

Except for the year after the deer attack, the trees, as expected, grew taller year by year.  There was however, no significant difference between heights reached by 2005 or in DBH at the end of 2012 despite what looked like a widening gap between treatments.

Defoliation scores of Prunus padus at Silwood Park 1993-2004; % leaves damaged and overall defoliation estimates

My original hypothesis that trees that were heavily defoliated at the start of their life would be more susceptible to chewing insects in later life, was not supported.  There was no significant difference between treatments, although, not surprisingly, there was a significant difference between years.  Average defoliation as has been reported for other locations was about 10% (Kozlov et al., 2015; Lim et al., 2015).

Number of Prunus padus trees with severe deer damage

That said, when I looked at the severity of deer attack, there was no effect of year but there was a significant effect of treatment, those trees that had been 100% defoliated in 1993 being most attractive to deer.   In addition, 20% of those trees were dead by 2012 whereas no tree deaths occurred for the control and less severely defoliated treatments.

I confess to being somewhat surprised to find as many significant results as I did from this simple analysis and was momentarily tempted to do a more formal analysis and submit it to a journal.  Given, however, the number of confounding factors, I am pretty certain that I would be looking at an amateur natural history journal with very limited visibility.  Publishing it on my blog will almost certainly get it seen by many more people, and who knows may inspire someone to do something similar but better.

The other reason that I can‚Äôt be bothered to do a more formal analysis is that my earlier work on which this experiment was based has not really hit the big time, the four papers in question only accruing 30 cites between them.¬† Hardly earth shattering despite me thinking that it was a pretty cool idea; ¬†insects from different feeding guilds competing by changing the architecture and or chemsitry of their host plant. ¬†Oh well. ¬†Did anything come out of my confounded experiment or was it a total waste of time?¬† The only thing published from the Sixty Trees was a result of a totally fortuitous encounter with Marco Archetti and his fascination with autumn colours (Archetti & Leather, 2005), the story of which I have related in a previous post, and which has, in marked contrast to the other papers, had much greater success in the citation stakes ūüôā

And finally, if anyone does want to play with the data, I am very happy to give you access to the files.

References

Archetti, M. & Leather, S.R. (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos, 110, 339-343. 50 cites

Kozlov, M.V., Lanta, V., Zverev, V., & Zvereva, E.L. (2015) Global patterns in background losses of woody plant foliage to insects. Global Ecology & Biogeography, 24, 1126-1135.

Leather, S.R. (1985) Does the bird cherry have its ‘fair share’ of insect pests ? An appraisal of the species-area relationships of the phytophagous insects associated with British Prunus species. Ecological Entomology, 10, 43-56.¬† 14 cites

Leather, S.R. (1988) Consumers and plant fitness: coevolution or competition ? Oikos, 53, 285-288. 10 cites

Leather, S.R. (1993) Early season defoliation of bird cherry influences autumn colonization by the bird cherry aphid, Rhopalosiphum padi. Oikos, 66, 43-47. 11 cites

Leather, S.R. (1995) Medium term effects of early season defoliation on the colonisation of bird cherry (Prunus padus L.). European Journal of Entomology, 92, 623-631. 4 cites

Leather, S.R. (1996) Biological flora of the British Isles Prunus padus L. Journal of Ecology, 84, 125-132.  14 cites

Lim, J.Y., Fine, P.V.A., & Mittelbach, G.G. (2015) Assessing the latitudinal gradient in herbivory. Global Ecology & Biogeography, 24, 1106-1112.

 

 

*which you will be pleased to know, is being analysed as part of Vicki Senior’s PhD project, based at the University of Sheffield.

**£10 000 which even in 1992 was not overly-generous.

8 Comments

Filed under EntoNotes, Science writing, Uncategorized

Mellow Yellow – Not all aphids live on green leaves

I have written before about aphids and how their quest for the ideal food plant may explain the evolution of host alternation; we find that most aphid species tend to be associated with rapidly growing meristems, or newly flushing leaves (Dixon, 2005). Some aphids are so keen on young plant tissue that they ‚Äėengineer‚Äô youth in their host plants, injecting salivary compounds and forming leaf‚Äďrolls, pseudo-galls and galls, all of which act as nutrient sinks and lengthen the time that the modified leaves stay green and nutrient-rich

leaf roll Rhopalosiphum

 Leaf-roll caused by Rhopalosiphum padi on bird cherry, Prunus padus.

Leaf roll Myzus cerasi

Pronounced leaf roll pseudo-gall caused by Myzus cerasi on Prunus avium.

Non host-alternating (autoecious) aphids, such as the sycamore aphid Drepanosiphum¬†platanoidis, the maple aphid, Periphyllus¬†testudinaceus, or the birch aphid, Euceraphis¬†punctipennis, have no such escape route; they are confined to their tree host for the year, albeit, they can, if they ‚Äėwish‚Äô, fly to another tree of the same species, but essentially they are held hostage by the their host plant. As the season progresses, leaf nutritional and physical properties change; going from young tender green leaves, with high nitrogen and water contents, to mature, tough leaves, low in nitrogen and water to yellow senescing¬†leaves with again, higher nitrogen levels (Awmack & Leather, 2002) and finally of course, dead brown leaves of no nutritional value.

Seasonal changes

Sycamore and maple aphids, enter a state of suspended animation ‚Äėsummer aestivation‚Äô (Essig, 1952; Dixon, 1963), whilst birch and poplar aphids, whose hosts plants often produce new growth during the year, ‚Äėtrack‚Äô these new leaves (Wratten, 1974; Gould et al., 2007). As far as these aphids are concerned young tissue is their best food source, with senescent¬†tissue being second best and mature leaves being least favoured. During the summer they will, however, take advantage of mature leaves that are prematurely senescing, such as those attacked by leaf diseases such as tar spot. I have often found sycamore aphids feeding and reproducing on these infected leaves whilst those aphids on neighbouring mature leaves remain in aestivation.

Tar spot 2

Effects of tar spot on sycamore leaves

Host-alternating (heteroecious) aphids on the other hand are somewhat different. As their life cycle includes a programmed migration back to their primary tree host in autumn, those autumn morphs (oviparae) are adapted to senescent tissue (Leather & Dixon, 1982, Kundu & Dixon, 1993, 1994). Similarly, the spring morphs (fundatrices and fundatrigeniae) are adapted to young leaves and find it difficult or impossible, to make a living on senescent leaves.
Morphs and host age

There are yet other aphids, such as the green spruce aphid Elatobium abietinum, the pine aphid, Eulachnus agilis and the black pecan aphid, Melanocallis caryaefoliae, that are senescence specialists. In contrast to the flush specialists, these aphids engineer senescence, also using salivary compounds,  and are unable to survive on young foliage (Bliss, 1973; Fisher, 1987; Cottrell et al., 2009).

Elatobium in action

Elatobium¬†abietinum ‘engineering’ senescence on spruce needles and avoiding young flushing tissue.

It is interesting to speculate that perhaps these tree-dwelling non host-alternating aphids are secondarily derived from the autumn part of the life-cycle of host-alternating aphids. After all, if non host-alternating aphids on herbaceous host plants are off-shoots of the summer part of the host-alternating life-cycle why not the other way round. There is just so much more to learn about aphids. Yet another reason why I love aphids so much ūüėČ

References

Awmack, C.S. & Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817-844.

Bliss, M., Yendol, W.G., & Kearby, W.H. (1973) Probing behaviour of Eulachnus agilis and injury to Scotch pine. Journal of Economic Entomology, 66, 651-655.

Cottrell, T.E., Wood, B.W. & Ni, X. (2009) Chlorotic feeding injury by the Black Pecan Aphid (Hemiptera: Aphididae) to pecan foliage promotes aphid settling and nymphal development. Environmental Entomology, 38, 411-416.

Dixon, A.F.G. (1963) Reproductive activity of the sycamore aphid, Drepanosiphum platanoides (Schr) (Hemiptera, Aphididae). Journal of Animal Ecology, 32, 33-48.

Dixon, A.F.G. (2005) Insect Herbivore-Host Dynamics. Cambridge University Press, Cambridge.

Fisher, M. (1987) The effect of previously infested spruce needles on the growth of the green spruce aphid, Elatobium abietinum. Annals of Applied Biology, 111, 33-41.

Gould, G.G., Jones, C.G., Rifleman, P., Perez, A., & Coelman, J.S. (2007) Variation in Eastern cottonwood (Populus deltoides Bartr.) phloem sap content caused by leaf development may affect feeding site selection behaviour of the aphid, Chaitophorous populicola Thomas (Homoptera: Aphididae). Environmental Entomology, 36, 1212-1225.

Kundu, R. & Dixon, A.F.G. (1993) Do host alternating aphids know which plant they are on? Ecological Entomology, 18, 61-66.

Kundu, R. & Dixon, A.F.G. (1994) Feeding on their primary host by return migrants of the host alternating aphid, Cavariella aegopodii. Ecological Entomology, 19, 83-86.

Leather, S.R. & Dixon, A.F.G. (1981) Growth, survival and reproduction of the bird-cherry aphid, Rhopalosiphum¬†padi, on it’s primary host. Annals of applied Biology, 99, 115-118.

Wratten, S.D. (1974) Aggregation in the birch aphid, Euceraphis punctipennis (Zett.) in relation to food quality. Journal of Animal Ecology, 43, 191-198.

 

Post script

A lot of what I describe comes from a talk I gave in 2009 at a workshop in Oxford on autumn colours (the output of which was Archetti, M., D√∂ring, T.F., Hagen, S.B., Hughes, N.M., Leather, S.R., Lee, D.W., Lev-Yadun, S., Manetas, Y., Ougham, H.J., Schaberg, P.G., & Thomas, H. (2009) Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends in Ecology & Evolution, 24, 166-173. I always meant to write the talk up as an Opinion piece but procrastination set in badly. I was somewhat annoyed with myself when earlier this year this excellent piece by the legendary ecologist and entomologist, Tom White, appeared; I have only myself to blame, six years is a very long bit of procrastination ūüėČ

White, T.C.R. (2015) Senescence-feeders: a new trophic sub-guild of insect herbivores Journal of Applied Entomology, 139, 11-22.

 

Post post script

This post is dedicated to my eldest son, Sam, who died quietly in his sleep, at a tragically young age, December 23rd 2010.¬†¬† It would have been his birthday on the 21st May.¬† Despite being a molecular biologist, (he worked at the Sanger Institute), he was as green as you can get, a great naturalist and conservationist, with an incredibly gentle soul. He strongly believed in conserving the World‚Äôs natural resources and amused colleagues by sticking up signs in the toilets at the Sanger, which read ‚ÄúIf its yellow let it mellow, if its brown flush it down‚ÄĚ.

Sampsa

 

He is sorely missed by us all. He also had more Nature papers than me ūüėČ

Parkhill, J., Achtman, M., James, K.D. et al., (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitides. Nature, 404, 502-506

Parkhill, J., Dougan, G. , James, K.D. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848-852.

Parkhill, J., Wren, B.W., Thomson, N.R. et al., (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 413, 523-527.

Parkhill, J., Sebaihia, M., Preston, A. et al., (2003) Comparative analysis of the genome sequences of Bordetella pertussis,   Bordetella parapertussis and Bordetella bronchiseptica. Nature Genetics, 35, 32-40

Wood, V., Gwilliam, R. Rajandream, M.A. et al., (2002) The genome sequence of Schizosaccharomyces pombe . Nature, 415, 871-880

 

 

9 Comments

Filed under Aphidology, Aphids

Not all Aphids are Pests

Unfortunately when you mention the word aphid most people’s first thought is PEST!  It is true that they are perhaps the most important insect pests of crops

Larson             Punk aphid

in temperate regions of the world, and that in the UK they are serious pests of cereals, sugar beet, beans, vegetables and glasshouse crops.¬† It has been estimated that crop losses due to feeding damage and/or virus transmission exceed ¬£100 million per annum http://www.scri.ac.uk/research/pp/pestanddisease/insectmiteecology/virusvectorinteractions .¬† On the other hand this is down to only about 250 species which out of a total of 5000 described species is not very many (about 5%).¬† Not only are most aphids playing useful roles in ecosystems acting as food sources to other insects, arthropods and dare I say it, vertebrates ūüėČ . They¬†also play an important part in the decomposition cycle (Choudhury, 1985).¬† The thing that most people don‚Äôt realise is that some aphids are incredibly rare. Some are rare because of their close associations with rare plants, others rare because of a complex relationship with ants https://simonleather.wordpress.com/2013/12/05/not-all-aphids-live-on-leaves/¬†and some for no apparent reason at all. ¬†For example, there are two aphid species that live on bird cherry (Prunus padus), ¬†Rhopalosiphum¬†padi, an extremely common aphid, host-alternating between bird cherry and grasses, and a major pest of cereals in temperate countries (Leather et al., 1989) and Myzus¬†padellus, host-alternating between bird cherry and members of the Labiatae (Galeopsis spp. (Hemp nettle)) and Scrophulariaceae (Pedicularis spp. and Rhinanthus sp., members of the snapdragon family).¬† In all my many years of sampling bird cherry I have never seen Myzus¬†padellus, yet their life-cycles and habits are strikingly similar, so why is the latter so rare?¬† No one knows.

Similarly, on birch we find, not very often because it is so rare, Monaphis antennata , which unlike most aphids, lives as a nymph (immature) on the upper side of birch leaves, possibly

Monaphis

to escape natural enemies as the much more common species of birch aphids, Euceraphis punctipennis and Betulaphis quadrituberculata like the majority of leaf-feeding aphids, both live on the underside of leaves, which is where aphid predators normally forage (Hopkins & Dixon 1997). I have seen this aphid once, shown to me by the late Nigel Barlow http://newzealandecology.org/nzje/free_issues/NZJEcol30_1_1.pdf  when he visited me at Silwood Park in the late 1990s.  Despite repeated visits to the same trees that we found Monaphis on, I have never seen it again.  So far no one has been able to explain why it is so rare (Hopkins et al., 1998).  Interestingly enough, apart from keys and identification manuals, it has rarely been written about; Web of Knowledge reveals only four research papers on it.

There are many more rare aphids hiding out there, a number of which have only ever been seen by the entomologist who first described them and no doubt even more who have not yet been found, as is the cases with many more insect species  Рnot enough insect taxonomists, not enough funding.

Choudhury, D. (1985) Aphid honeydew – a re-appraisal of Owen and Wiegert’s hypothesis. Oikos, 45, 287-289. http://www.jstor.org/discover/10.2307/3565718?uid=3738032&uid=2&uid=4&sid=21103382740253

Hille Ris Lambers, D. & Rogerson, J.P. (1946) A new British aphid from Prunus padus L.  Myzus padellus sp n. (Hemiptera, Aphididae). Proceedings of the Royal Entomological Society of London, 15, 101-105 http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3113.1946.tb00833.x/abstract

Hopkins, G.W. & Dixon, A.F.G. (1997) Enemy-free space and the feeding niche of an aphid. Ecological Entomology, 22, 271-274. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2311.1997.00075.x/full

Hopkins, G.W. & Dixon, A.F.G. (2000)  Feeding site location in birch aphids (Sternorrhyncha: Aphididae): the simplicity and reliability of cues.  European Journal of Entomology, 97, 279-280 http://www.eje.cz/pdfs/eje/2000/02/19.pdf

Hopkins, G.W., Thacker, J.I., & Dixon, A.F.G. (1998) Limit to the abundance of rare species: an experimental test with a tree aphid. Ecological Entomology, 23, 386-390. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2311.1998.00163.x/full

Leather, S.R., Walters, K.F.A., & Dixon, A.F.G. (1989) Factors determing the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: a study and review. Bulletin of Entomological Research, 79, 345-360. http://journals.cambridge.org/download.php?file=%2FBER%2FBER79_03%2FS0007485300018344a.pdf&code=8d6d2144666846ebb5d589f01343f27c

8 Comments

Filed under Aphidology, Aphids

Silk- not just a spider thing

Mention silk and most people will, I guess, immediately think of spiders and cobwebs.

Pressed a bit further, some may mention silkworms, and some might even know the word sericulture and that the common silkworm feeds on mulberry bushes.   What they may not know, is that the silk worm is the larvae of the moth Bombyx mori and that there are actually four species of lepidopteran larvae commonly used in silk production.  These are pictured below in the lovely illustration from Meyers Konversations-Lexikon; next to the picture are some B. mori larvae.

Silkworm larvae Silkworms

Meyers Konversations-Lexikon, 4th Auflage, Band 14, Seite 826a (4th ed., Vol. 14, p.826a)

Four of the most important domesticated silk moths. Top to bottom: Bombyx mori, Hyalophora cecropia, Antheraea pernyi, Samia cynthia. From Meyers Konversations-Lexikon (1885-1892

Silk production is of course not just a feature of spiders and lepidoptera.  It is a widespread feature of insect life, being used for pupal cases, as a mode of transport (ballooning) as shown by larvae of the gypsy moth and other species of Lepidoptera,

ballooning gypsy moth            ballooning gypsy moth drawing

protective cases as in larval caddis flies or also, by some caddis fly larvae, as fishing equipment.

 caddisfly_larva  Caddis fly net

But in my opinion, the most dramatic use of silk is that seen in a genus of micro-moths, belonging to the Yponomeutidae, the small ermine moths, Yponomeuta.  They and their relatives, are silk-producers extraordinaire.  Collectively, they are known as small ermine moths; so called because of their adult colouration which resembles the ermine worn by nobility and small, because of the existence of several larger moths with ermine in their names.

Yponomeuta_evonymellus

http://commons.wikimedia.org/wiki/File:Yponomeuta_evonymella-02_(xndr).jpg#file

The larvae are less attractive and are the web/silk producers.

Yponomeuta_evonymella_caterpillars

http://commons.wikimedia.org/wiki/File:Yponomeuta.evonymella.caterpillars.jpg

My particular favourite is the bird cherry ermine moth, and not just because the bird cherry is my favourite tree.  (My eldest son’s middle name is bird cherry, albeit in Finnish). The adult moths lay their eggs in August, in clusters of up to 100 or so on young twigs of the bird cherry Prunus padus, cover them with an egg shield and then die (Leather, 1986).  The eggs hatch shortly afterwards and the larvae spend the winter under the egg shield until the following spring.  When the buds begin to burst in spring, the larvae emerge from beneath the shield and begin to feed gregariously on the newly emerging leaves, spinning a web that protects them from natural enemies  and may also help in thermoregulation and as a trail indicator (Kalkowski, 1958)  http://edepot.wur.nl/201846 .  It is possible to have great fun by selecting a lead larvae to act as a trail blazer and watch the rest of the colony follow them to a destination you have chosen.

Every three to four years or so, populations of the moths get so high that they exhaust their food supplies, defoliating entire trees and covering¬† them with a tough coating of silky white webbing (Leather, 1986; Leather & Mackenzie, 1994).¬† In fact, in Finland, I once saw three neighbouring trees totally enveloped in a silken tent caused by the bird cherry ermine moth, Yponomeuta¬†evonymellus, that you could enter and shelter inside from the rain. ¬†Once they really get going as spring progresses, the landscape, particularly if in an area where bird cherry is common, begins to take on a somewhat wintry look, which for May is a little odd.¬† Those of who you, who have travelled north of Perth in Scotland, on the A9, will be familiar with this phenomenon.¬† It frequently makes the Scottish newspapers and generates headlines such as ‚Äúwinter wonderland‚ÄĚ or ‚Äúghostly landscape‚ÄĚ. As they run out of trees, the larvae begin to migrate in a desperate search for trees with leaves still on them, and by now, have become less fussy about what they eat.¬† It is at this wandering stage of their life that the true extent

Yponomeuta webbing  bird cherry emrine moth webbing

of their singlemindedness (I have seen a trail of thousands of larvae marching along a railway line; they didn’t survive the passing of the 0850 from Helsinki) and their ability to produce silk becomes startlingly apparent.

Ermine moths on car    Ermine_moth_larva_on_a_Swedish_army_bike

http://commons.wikimedia.org/wiki/File:Ermine_moth_larva_on_a_Swedish_army_bike.jpg

Truly, silk is not just a spider thing.

Kalkowski, W. (1958). Investigations on territorial orientation during ontogenic development in Hyponomeuta. Folia Biol Krakow 6: 79-102.

Leather, S. R. & Mackenzie, G. A. (1994). Factors affecting the population development of the bird cherry ermine moth, Yponomeuta evonymella L. The Entomologist 113: 86-105.

Leather, S. R. (1986). Insects on bird cherry I The bird cherry ermine moth, Yponomeuta evonymellus(L.). Entomologist’s Gazette 37: 209-213.

6 Comments

Filed under EntoNotes