Tag Archives: Diptera

Shocking News – the truth about electroperception – insects can ‘feel’ electric fields

Static electric fields are common throughout the environment and this has been known for some time (e.g Lund (1929) and back in 1918, the great Jean-Henri Fabre, writing about the dung beetle, Geotrupes stated “They seem to be influenced above all by the electric tension of the atmosphere. On hot and sultry evenings, when a storm is brewing, I see them moving about even more than usual. The morrow is always marked by violent claps of thunder

Given this, it is surprising that it was not until the 1960s that entomologists started to take a real interest in electroperception, when a Canadian entomologist decided to investigate the phenomenon further, but using flies (Edwards, 1960).  He found that if Drosophila melanogaster and Calliphora vicina exposed to, but not in contact with, an electrical field, they stopped moving. Calliphora vicina needed a stronger voltage to elicit a response than D. melanogaster, which perhaps could be related to their relative sizes. It seemed that their movement was reduced when electrical charge applied and changed, but not if the field was constant.

Responses of two fly species to electrical fields (From Edwards, 1960)

In a follow up experiment with the the Geometrid moth Nepytia phantasmaria he showed that females were less likely to lay eggs when exposed to electrical fields (Edwards, 1961), but the replication was very low and the conditions under which the experiment was run were not very realistic.

In the same year, Maw (1961) working on the Ichneumonid wasp, Itoplectis conquisitor, which is attracted to light, put ten females into a chamber with a light at one end but with parts of the floor charged at different levels.  The poor wasps were strongly attracted to the light but the electrical ‘barrier’ slowed them down; the stronger the charge, the greater the reluctance to enter the field.

On the other hand, some years later, working with the housefly, Musca domestica and the cabbage looper, Trichoplusia ni, across a range of different strength electrical fields, Perumpral et al., (1978)   found no consistent avoidance patterns in where the houseflies preferred to settle, but did find that wing beat frequency of male looper moths was significantly affected, although inconsistently.  Female moths on the other hand were not significantly affected.  This put paid to their intention to develop a non-chemical control method for these two pests.

A more promising results was obtained using the cockroach Periplaneta americana.  Christopher Jackson and colleagues at Southampton University showed that the cockroaches turned away, or were repulsed, when they encountered an electric field and if continuously exposed to one, walked more slowly, turned more often and covered less distance (Jackson et al., 2011).  As an aside, this is similar to the effects one of my PhD students found when she exposed carabid beetles exposed to sub-lethal applications of the insecticide dimethoate*.

Periplaneta americana definitely showing a reluctance to cross an electrical field (Jackson et al., 2011).

Other insect orders have also been shown to respond to electric fields.  Ants, in particular the fire ant, Solenopsis invicta, are apparently a well-known hazard to electrical fittings (MacKay et al., 1992), and a number of species have been found in telephone receivers (Eagleson, 1940), light fittings and switches (Little, 1984), and even televisions (Jolivet, 1986), causing short circuits and presumably, coming to untimely ends 🙂

Rosanna Wijenberg and colleagues at Simon Fraser University in Canada, really went to town and tested the responses of a variety of different insect pests to electric fields. They found that the common earwig, Forficula auricularia, two cockroaches, Blatta germanica, Supella longipalpa, two Thysanurans, the silverfish, Lepisma saccharina and the firebrat Thermobia domestica were attracted to, or at least arrested by electrified coils.  Periplaneta americana, on the other hand, was repulsed (Wijenberg et al., 2013).  They suggested that using electrified coils as non-toxic baits might be an environmentally friendly method of domestic pest control.  I have, however, not been able to find any commercial applications of this idea although perhaps you know better?

Although a number of marine vertebrates generate electricity and electric fields as well as perceiving and communicate using them, there was, until fairly recently, no evidence of electrocommunication within the insect world (Bullock, 1999); after all, they have pheromones 😊

When we look at the interaction between insects and electromagnetic fields there is growing evidence that bees, or at least honey bees, like some birds (Mouritsen et al., 2016) have the wherewithal and ability to navigate using magnetic fields (Lambinet et al., 2017ab).  Interestingly**, honeybees, Apis mellifera have been shown to generate their own electrical fields during their waggle dances which their conspecifics are able to detect (Greggers et al., 2013).  Bumble bees (Bombus terrestris), have also been shown to be able to detect electrical fields.  In this case, those surrounding individual plants.  The bees use the presence or absence of an electrical charge to ‘decide’ whether to visit flowers or not. If charged they are worth visiting, the charge being built up by visitation rates of other pollinating insects  (Clarke et al., 2013)

Since I’m on bees, I can’t leave this topic without mentioning mobile phones and electromagnetic radiation, although it really deserves an article of its own.  The almost ubiquitous presence of mobile phones has for a long time raised concern about the effect that their prolonged use and consequent exposure of their users to electromagnetic radiation in terms of cancer and other health issues (Simkó & Mattson, 2019). Although there is growing evidence that some forms of human cancer can be linked to their use (e.g. Mialon & Nesson, 2020), the overall picture is far from clear (Kim et al., 2016). Given the ways in which bees navigate and the concerns about honeybee populations it is not surprising that some people suggested that electromagnetic radiation as well as neonicitinoids might be responsible for the various ills affecting commercial bee hives (Sharma & Kumar, 2010, Favre, 2011). The evidence is far from convincing (Carreck, 2014) although a study from Greece looking at the intensity of electromagnetic radiation from mobile phone base stations on the abundance of pollinators found that the abundance of beetles, wasps and most hoverflies decreased with proximity to the base stations, but conversely, the abundance of bee-flies and underground nesting wild bees increased, while butterflies were unaffected (Lázaro et al., 2016). A more recent study has shown that exposure to mobile phones resulted in increased pupal mortality in honeybee queens but did not affect their mating success (Odemer & Odemer, 2019).  All in all, the general consensus is that although laboratory studies show that electromagnetic radiation can affect insect behaviour and reproduction the picture remains unclear and that there are few, if any field-based studies that provide reliable evidence one way or the other (Vanbergen et al., 2019).   Much more research is needed before we can truly quantify the likely impacts of electromagnetic radiation on pollinators and insects in general.

 

Acknowledgements

I must confess that I had never really thought about insect electroperception until I was at a conference and came across a poster on the subject by Matthew Wheelwright, then an MRes student at the University of Bristol, so it is only fair to dedicate this to him.

 

References

 

Bullock, T.H. (1999) The future of research on elctroreception and eclectrocommunicationJournal of Experimental Biology, 10, 1455-1458.

Carreck, N. (2014) Electromagnetic radiation and bees, again…, Bee World, 91, 101-102.

Clarke, D., Whitney, H., Sutton, G. & Robert, D. (2013) Detection and learning of floral electric fields by bumblebees. Science, 340, 66-69.

Eagleson, C. (1940) Fire ants causing damage to telephone equipment.  Journal of Economic  Entomology, 33, 700.

Edwards, D.K. (1960) Effects of artificially produced atmospheric electrical fields upon the activity of some adult Diptera.  Canadian Journal of Zoology, 38, 899-912.

Edwards, D.K. (1961) Influence of electrical field on pupation and oviposition in Nepytia phantasmaria Stykr. (Lepidoptera: Geometridae). Nature, 191, 976.

Fabre, J.H. (1918) The Sacred Beetle and Others. Dodd Mead & Co., New York.

Favre, D. (2011) Mobile phone induced honeybee worker piping. Apidologie, 42, 270-279.

Greggers, U., Koch, G., Schmidt, V., Durr, A., Floriou-Servou, A., Piepenbrock, D., Gopfert, M.C. & Menzel, R. (2013) Reception and learning of electric fields in bees. Proceedings of the Royal Society B, 280, 20130528.

Jackson, C.W., Hunt, E., Sjarkh, S. & Newland, P.L. (20111) Static electric fields modify the locomotory behaviour of cockroaches. Journal of Experimental Biology, 214, 2020-2026.

Jolivet, P. (1986) Les fourmis et la Television. L’Entomologiste, 42,321-323.

Kim, K.H., Kabir, E. & Jahan, S.A. (2016) The use of cell phone and insight into its potential human health impacts. Environmental Monitoring & Assessment, 188, 221.

Lambinet, V., Hayden, M.E., Reigel, C. & Gries, G. (2017a) Honeybees possess a polarity-sensitive magnetoreceptor. Journal of Comparative Physiology A, 203, 1029-1036.

Lambinet V, Hayden ME, Reigl K, Gomis S, Gries G. (2017b) Linking magnetite in the abdomen of honey bees to a magnetoreceptive function. Proceedings of the Royal Society, B., 284, 20162873.

Lazáro, A., Chroni, A., Tscheulin, T., Devalez, J., Matsoukas, C. & Petanidou, T. (2016) Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators.  Journal of Insect Conservation, 20, 315-324.

Little, E.C. (1984) Ants in electric switches. New Zealand Entomologist, 8, 47.

Lund, E.J. (1929) Electrical polarity in the Douglas Fir. Publication of the Puget Sound Biological Station University of Washington, 7, 1-28.

MacKay, W.P., Majdi, S., Irving, J., Vinson, S.B. & Messer, C. (1992) Attraction of ants (Hymenoptera: Formicidae) to electric fields. Journal of the Kansas Entomological Society, 65, 39-43.

Maw, M.G. (1961) Behaviour of an insect on an electrically charged surface. Canadian Entomologist, 93, 391-393.

Mialon, H.M. & Nesson, E.T. (2020) The association between mobile phones and the risk of brain cancer mortality: a 25‐year cross‐country analysis. Contemporary Economic Policy, 38, 258-269.

Mouritsen, H., Heyers, D. & Güntürkün, O. (2016) The neural basis of long-distance navigation in birds. Annual Review of Physiology, 78, 33-154.

Odemer, R., & Odemer, F. (2019). Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Science of The Total Environment, 661, 553–562.

Perumpral, J.V., Earp, U.F. & Stanley, J.M. (1978) Effects of electrostatic field on locational preference of house flies and flight activities of cabbage loopers. Environmental Entomology, 7, 482-486.

Sharma, V.P. & Kumar, N.R. (2010) Changes in honeybee behaviour and biology under the influence of cellphone radiation. Current Science, 98, 1376-1378.

Simkó, M. & Mattson, M.O. (2019) 5G wireless communication and health effects—A pragmatic review based on available studies regarding 6 to 100 GHz. International Journal of Environmental Research & Public Health, 16, 3406.

Vanbergen, A.J., Potts, S.G., Vian, A., Malkemper, E.P., Young, J. & Tscheulin, T. (2019) Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): Evidence and knowledge gaps. Science of the Total Environment, 695, 133833.

Wijenberg, R., Hayden, M.E., Takáca, S. & Gries, G. (2013) Behavioural responses of diverse insect groups to electric stimuli. Entomoloogia experimentalis et applicata, 147, 132-140.

 

*

yet another entry for my data I am never going to publish series 😊

 

**

My wife really hates it when I start a sentence like this, as she says “You’re always starting sentences like that and it is rarely interesting”

1 Comment

Filed under EntoNotes

Twisted, hairy, scaly, gnawed and pure – side-tracked by Orders

I’m supposed to be writing a book, well actually two, but you have to be in the right mood to make real progress. Right now, I’m avoiding working on one of the three chapters that I haven’t even started yet* and I really should be on top of them by now as I have already spent the advance, and have less than a year to go to deliver the manuscript 😦 Instead of starting a new chapter I’m tweaking Chapter 1, which includes an overview of Insect Orders.  While doing that I was side tracked by etymology. After all, the word is quite similar to my favourite subject and a lot of people confuse the two. Anyway, after some fun time with my Dictionary of Entomology, (which is much more of an encyclopaedia than a dictionary), and of course Google, I have great pleasure in presenting my one stop shop for those of you who wonder how insect orders got their names.  Here they are, all in one easy to access place with a few fun-filled facts to leaven the mixture.

Wings, beautiful wings (very much not to scale)

First, a little bit of entomological jargon for those not totally au fait with it.  Broadly speaking we are talking bastardised Greek and Latin. I hated Latin at school but once I really got into entomology I realised just how useful it is.  I didn’t do Greek though 😊, which is a shame as Pteron is Greek for wing and this is the root of the Latin ptera, which features all over the place in entomology.

Since I am really only talking about insects and wings, I won’t mention things like the Diplura, Thysanura and other Apterygota.  They don’t have wings, the clue being in the name, which is derived from Greek; A = not, pterygota, derived from the Greek ptérugos = winged, which put together gives us unwinged or wingless. In Entojargon, when we talk about wingless insects we use the term apterous, or if working with aphids, aptera (singular) or apterae (plural).   I’m going to deal with winged insects, the Exopterygota and the Endopterygota. The Exopterygota are insects whose wings develop outside the body and there is a gradual change from immature to adult.  Think of an aphid for example (and why not?); when the nymph (more Entojargon for immature hemimetabolus insects) reaches the third of fourth instar (Entojargon for different moulted stages), they look like they have shoulder pads; these are the wing buds, and the process of going from egg to adult in this way is called incomplete metamorphosis.

Fourth instar alatiform nymph of the Delphiniobium junackianum the Monkshood aphid.  Picture from the fantastic Influential Points site https://influentialpoints.com/Images/Delphiniobium_junackianum_fourth_instar_alate_img_6833ew.jpg (Any excuse for an aphid pciture)

In the Endopterygota, those insects where the wings develop inside the body, e.g butterflies and moths, the adult bears no resemblance to the larva and the process is described as complete metamorphosis and the life cycle type as holometabolous. It is also important to note that the p in A-, Ecto- and Endopterygota is silent.

Now on to the Orders and their names.  A handy tip is to remember is that aptera means no wings and ptera means with wings.  This can be a bit confusing as most of the Orders all look and sound as if they have wings.  This is in part, due to our appalling pronunciation of words; we tend to make the syllables fit our normal speech patterns which doesn’t necessarily mean breaking the words up in their correct component parts. Diptera and Coleoptera are two good examples – we pronounce the former as Dip-tera and informally as Dips.  From a purist’s point of view, we should be pronouncing the word Di-tera – two wings, and similarly, Coleoptera as Coleo-tera, without the p 🙂 Anyway, enough of the grammar lessons and on with the insects.

Exopterygota

Ephemeroptera The Mayflies, lasting a day or winged for a day J The oldest extant group with wings. They are also a bit weird, as unlike other Exopterygota they have a winged sub-adult stage

Odonata              Dragonflies and Damselflies – think dentists, toothed, derived from the Greek for tooth, odoús. Despite their amazing flight capability, the name refers to their toothed mandibles.  The wings do get a mention when we get down to infraorders, the dragonflies, Anisoptera meaning uneven in that the fore and hind wings are a different shape and the damselflies, Zygoptera  meaning even or yoke, both sets of wings being pretty much identical.

Dermaptera       Earwigs, leathery/skin/hide, referring to the fore-wings which as well as being leathery are reduced in size.  Despite this, the much larger membranous hind wings are safely folded away underneath them.

A not very well drawn (by me) earwig wing 😊

Plecoptera          Stoneflies, wickerwork wings – can you see them in the main image?

Orthoptera         Grasshoppers and crickets, straight wings, referring to the sclerotised forewings that cover the membranous, sometimes brightly coloured hind wings.  Many people are surprised the first time they see a grasshopper flying as they have been taken in by the hopper part of the name and the common portrayal of grasshoppers in cartoons and children’s literature; or perhaps not read their bible “And the locusts went up over all the land of Egypt, and rested in all the coasts of Egypt”. I think also that many people don’t realise that locusts are grasshoppers per se.

Grasshopper wings

Dictyoptera        Cockroaches, termites and allies, net wings

Notoptera           The order to which the wingless Ice crawlers (Grylloblattodea) and Gladiators Mantophasmatodea) belong. Despite being wingless, Notoptera translates as back wings. It makes more sense when you realise that the name was coined when only extinct members of this order were known and they were winged.

Mantodea           Mantids, the praying mantis being the one we are all familiar with, hence the name which can be translated as prophet or soothsayer

Phasmotodea    Phasmids, the stick insects and leaf insects – phantom, presumably referring to their ability to blend into the background.

Psocoptera         Bark lice and book lice, gnawed or biting with wings. In this case the adjective is not in reference to the appearance of the wings, but that they are winged insects that can bite and that includes humans, although in my experience, not very painful, just a little itchy. They are also able to take up water directly from the atmosphere which means that they can exploit extremely dry environments.

Embioptera        Web spinners, lively wings. Did you know that Janice Edgerly-Rooks at Santa Clara University has collaborated with musicians to produce a music video of Embiopteran silk spinning? https://www.youtube.com/watch?v=veehbMKjMgw

Zoraptera            Now this is the opposite of the Notoptera, the Angel insects, Zora meaning pure in the sense of not having any wings.  Unfortunately for the taxonomists who named this order, winged forms have now been found 🙂

Thysanoptera    Thrips and yes that is both the plural and singular, thysan meaning tassel wings, although I always think that feather would be a much more appropriate description.

Feathery thrips wing – Photo courtesy of Tom Pope @Ipm_Tom

Hemiptera          True bugs – half wings.  The two former official suborders were very useful descriptions, Homoptera, e.g. aphids, the same. Heteroptera such as Lygaeids, e.g. Chinch bugs, which are often misidentified by non-entomologists as beetles where the prefix Hetero means different, referring to the fact that the fore wings are hardened and often brightly coloured in comparison with the membranous hind wings.

Coreid bug – Gonecerus acuteangulatus – Photo Tristan Banstock https://www.britishbugs.org.uk/heteroptera/Coreidae/gonocerus_acuteangulatus.html

Phthiraptera      The lice, the name translates as wingless louse. I guess as one of the common names for aphids is plant lice they felt the need to make the distinction in the name.

Siphonaptera     Fleas – tube without wings, referring to their mouthparts

 

Endopterygota

Rhapidioptera   Snakeflies – needle with wings, in this case referring to the ovipositor, not to the wings, which are similar to those of dragonflies.

The pointy end of a female snakefly

Megaloptera      Alderflies, Dobsonflies – large wings

Neuroptera        Lacewings – veined wings

Coleoptera         Beetles – sheathed wings, referring to the hardened forewings, elytra, that cover the membranous hind wings. The complex process of unfolding and refolding their hind wings means that many beetles are ‘reluctant’ to fly unless they really need to.

Strepsiptera       These are sometimes referred to as Stylops.  They are endoparasites of other insects. The name translates as twisted wings. Like flies, they have only two pairs of functional wings the other pair being modified into halteres.  Unlike flies, their halteres are modified fore wings.  Their other claim to fame is that they feature on the logo of the Royal Entomological Society.

The Royal Entomological Society Strepsipteran

Mecoptera         Scorpionflies, hanging flies – long wings.  Again, not all Mecoptera are winged, but those that are, do indeed have long wings in relation to their body size.

Male Scorpionfly, Panorpa communis.  Photo David Nicholls https://www.naturespot.org.uk/species/scorpion-fly

Siphonaptera     Fleas – tube no wings. The tube part of the name refers to their mouthparts.

Diptera                 Flies, two wings, the hind pair are reduced to form the halteres, which are a highly complex orientation and balancing device.

Trichoptera         Caddisflies, which are, evolutionarily speaking, very closely related to the Lepidoptera.  Instead of scales, however, their wings are densely cover with small hairs, hence the name hairy wings.  Some species can, at first glance, be mistaken for small moths. If you want to know more about caddisflies I have written about them here.

Lepidoptera       Moths and butterflies, scaly wings; you all know what happens if you pick a moth or butterfly up by its wings.

Moth wing with displaced scales

 

Hymenoptera    Wasps, bees, ants – membrane wings

Wing of a wood wasp, Sirex noctilio

 

And there you have it, all 30 extant insect orders in one easy location.

 

*

 

8 Comments

Filed under EntoNotes

Pick and Mix 28 – some video treats

A very interesting, if somewhat gruesome video, of a botfly larva being removed from a human

Continuing with the fly stuff, here are some maggots having an evening meal 🙂 Seriously though, the article is all about using insects as food

And continuing with flies and food – don’t forget that bees are not the only pollinators

Now some hungry mosquitoes, which are of course. also flies

More flies – this time on how to stop them eating your wheat crop

Cockroach farming for food and medicine

Beetles like light too

Magnificent Monarchs in flight – a moving experience

A musical introduction to insect orders

A moving video from a teenage girl about insect extinction

3 Comments

Filed under Pick and mix

My group is bigger, better and more beautiful than yours – The annual MSc Entomology trip to the Natural History Museum, London, 2018

This week we went on one of my favourite trips with the MSc Entomology students.  We visited the Natural History Museum in London.  We got off to fantastic start – all the students, and staff, arrived at the arranged time of 0645, something that had never happened before :-). The weather was fine, although at that time in the morning it was too dark to really appreciate it, and off we set.  I should have known that something would go wrong and sure enough the traffic was awful, and we had to make an unscheduled stop at a motorway service station to make sure our driver didn’t exceed his quota of working hours.

The now much delayed coach basking in the sunshine at a motorway service station.

Some of the MSc students; remaining cheerful despite the delay.

Forty-five minutes later we set off again and despite encountering a few further delays arrived safely, albeit almost an hour and a half late.  Luckily our host for the day Erica McAlister (@flygirlNHM) was ready and waiting and very efficiently got our visit back on track.  This year we were shown Colossal Coleoptera by Michael Geiser, Huge Hymenoptera by Nathalie Dale-Skey, Lustrous Lepidoptera by Alessandro Giusi and Deadly Diptera by Erica McAlister.   All our specialist hosts were, as you would expect, very keen to extol the virtues of their groups, and who can blame them.  I do the same with Awesome aphids 🙂 We are always very appreciative of the time and care that the NHM entomologists give us, especially as they have, sadly, recently had their numbers reduced.  Hopefully, as the realities of the problems associated with insect conservation and identification become even more apparent than they already are, we will see the appointment of more entomologists to this very much-needed global resource.  Here are some pictures to give you a flavour of the day.

Mouse mat for forensic entomologists 🙂

Alessandro Giusti waxing lyrical about the biggest, the smallest and the most beautiful Lepidoptera (moths as far as he is concerned).

 

The large and the small (a really bad photo by yours truly, I am still getting to grips with my new camera)

Natalie Dale-Skey extolling the virtues of Hymenoptera

They don’t have to be big and tropical to be beautiful – these are tiny but gorgeous

I do like a good wasp nest 🙂

Erica McAlister on the sex life of flies

The biggest flies in the world pretending to be wasps

A selection of flies

I was very impressed that the Crane fly still has all its legs attached.  I collected Crane flies for my undergraduate collection and had to resort to sticking their legs on to a piece of card.

Not quite the rarest fly in the World but as its larvae live inside rhinoceroses it could be in trouble 😦

Big beautiful beetles

Cockchafers aren’t really this big, but wouldn’t it be awesome if they were?

MSc Entomology (@Entomasters) at the end of the visit.  Photo courtesy of Heather Campbell (@ScienceHeather), our newest member of staff

Once again, a huge vote of thanks to Erica and colleagues for making this a memorable visit.  We had a fantastic day.

3 Comments

Filed under EntoNotes, Teaching matters

An inordinate fondness for biodiversity – a visit behind the scenes at the Natural History Museum

Last week  (13th February) I traveled with the MSc Entomology students to the Natural History Museum, London.  As part of their course they are taken behind the scenes and meet some of the curators and their favourite beasts.  This one of my favourite course trips and although I have made the pilgrimage for many years I always find something new to marvel at as well as reacquainting myself with some of my old favourites.  After an early start (0645) we arrived exactly on time (for a change), 10.30, at the Museum site in South Kensington.  I always have mixed feelings about South Kensington, having spent twenty years of my life commuting to Imperial College, just up the road from the museum.  I loved teaching on the Applied Ecology course I ran, but over the years the working atmosphere in the Department became really toxic* and I was extremely glad to move to my present location, Harper Adams University.  After signing in, which with twenty students took some time, Erica McAlister (@flygirl) led us through the thronged galleries (it was half term) to the staff

nhm1

Nostalgia time, my first biological memory, aged 3.

areas, where the research, identification and curating takes place.  Our first port of call was the Diptera where Erica regaled us with lurid tales of flies, big and small, beneficial and pestiferous.

nhm2

Erica McAlister extolling the virtues of bot flies

nhm3

Any one fancy cake for tea?  Kungu cake, made from African gnats

nhm-mosq

Early advisory poster

As we left to move on to the Hymenopteran, hosted by David Notton, I noticed this classic poster warning against mosquitoes.  David chose bees as the main focus of his part of the tour, which as four of the students will be doing bee-based research projects was very apt.

nhm5

Admiring the bees

Whilst the students were engrossed with the bees I did a bit of fossicking and was amused to find that tobacco boxes were obviously a preferred choice by Scandinavian Hymenopterists in which to send their specimens to the museum.

nhm-tobacco

Finnish and Swedish tobacco boxes being put to good use

Next was that most eminent of Coleopterists, Max @Coleopterist Barclay who as usual enthralled the students and me, with stories of

nhm7

Max Barclay demonstrating a Lindgren funnel and talking about ‘fossilised’ dung balls

beetles large and small, anecdotes of Darwin and Wallace and the amusing story of how ancient clay-encased dung balls were for many years thought by anthropologists and archaeologists to be remnants of early humankind’s bolas hunting equipment.  It was only when someone accidentally broke one and found a long-dead dung beetle inside that the truth was revealed 🙂

nhm8

Often overlooked, the Natural History Museum is an exhibit in itself

 As we were leaving to move on to the Lepidoptera section, I felt obliged to point out to the students that not only is the outside of the museum stunningly beautiful but that the interior is also a work of art in itself, something that a lot of visitors tend to overlook. Once in the Lepidoptera section  Geoff Martin proudly displayed his magnificent collection of Lepidoptera, gaudy and otherwise, including the type specimen of the Queen Alexandra’s Birdwing which was captured with the aid of a shotgun!

nhm9

Lepidopterist, Geoff Martin, vying with his subjects in colourful appearance 🙂

Lunch and a chance to enjoy the galleries was next on the agenda.  Unfortunately, as it was half term this was easier said than done, although I did find a sunny spot to eat my packed lunch, as a Yorkshireman I always find the prices charged for refreshments by museums somewhat a painful.  In an almost deserted gallery I came across this rather nice picture.

nhm10

A lovely piece of historical entomological art.

Then it was on to the Spirit Collection.  Erica had laid on a special treat, Oliver Crimmen, fish man extraordinaire.  I may be an entomologist but I can sympathise with this branch of vertebrate zoology.  Fish, like insects are undeservedly ranked below the furries, despite being the most speciose vertebrate group.  I have been in the Spirit Room many times but have never seen inside the giant metal tanks.  Some of these, as Ollie demonstrated with a refreshing disregard for health and safety, are filled with giant fish floating in 70% alcohol.

nhm11

Fish man, Oliver Crimmen, literally getting to grips with his subjects.

nhm12

A fantastic end to the day culminated with a group photo with a spectacular set of choppers 🙂

Many thanks to Erica McAlister for hosting and organising our visit and to the NHM staff who passionately attempted to convert the students to their respective ‘pets’.

*one day I will write about it.

1 Comment

Filed under EntoNotes, Teaching matters, Uncategorized

EntoSci16 – a conference for future and budding entomologists

Fig 1a

Some of you may be wondering how this World’s first came about. Well, it was all due to Twitter. After a lot of nagging encouragement from one of my PhD students, I finally joined Twitter at the back-end of 2012. Shortly afterwards I met another new Tweeter, @Minibeastmayhem (Sally-Ann Spence in real life) who approached me with an idea that she had tried to get off the ground for a several years – an entomology conference for children. This sounded like a great idea to me and I was extremely surprised to hear that she had been told by various entomologists that it wouldn’t work. After a bit of ‘to and fro’ on Twitter we met up for a very nice Sunday lunch and hammered out a basic plan of action and a mission statement.

Fig 1b

Sally-Ann had done a lot of the preliminary work in approaching potential presenters and over the next couple of months we came up with a few more. I then sounded out my University (Harper Adams) who were very keen on the idea and agreed to do the publicity and the catering. We then began approaching a number of organisations for financial support and/or for stuff to put in the conference goodie bags. Surprisingly, some organisations that claim to support invertebrates and are keen on education, such as the RSPB and London Zoo, judging by their response, obviously didn’t even read our letters or only pay lip-service to the majority of the animal kingdom as they were singularly unhelpful.  Undeterred by these setbacks, we persevered, and with very generous support from the Royal Entomological Society , both financial and in the person of their Director of Outreach, Luke Tilley, were able to put together a very exciting package of events and presenters. And very importantly, because of the generosity of our sponsors, all free for the delegates. The big day, April 13th 2016, arrived and we were as ready as we would ever be. Almost 300 students and their accompanying adults (science teachers, careers teachers and some parents) turned up on the day, and to think that at one stage we were worried that no-one would be interested 🙂

The delegates were all issued with colour-coded conference lanyards, and with the enthusiastic help of MSc and BSc students acting as guides, were then 

Fig 1

 

started on the action-packed, and hopefully enthralling and stimulating conference circuit.

Fig 2

George McGavin (our Patron) and Erica McAlister from the Natural History Museum (London) got the conference off to a great start with two very entertaining plenary talks about the wonders of entomology and flies respectively. After that it was on to the zones.

Graham & Janice Smith with the help of Tim Cockerill, were kept very busy with their Bugs and Beetles room, Steffan Gates (the Gastronaut) gave a dazzling and interactive display of entomophagy, Amoret Whitaker from the University of Winchester introduced the students to forensic entomology which included them processing a ‘maggot-infested crime scene’, and current and past MSc Entomology students (Soap Box Scientists), the Field Studies Council, RHS Wisley, and other exhibitors provided a very interactive and informative session in Zone 5. In the main lecture theatre, Max Barclay, Erica McAlister, George McGavin, Andy Salisbury, Darren Mann and Richard Comont were subjected to a barrage of questions ranging from how much they earned, to their favourite insects, their most dangerous insect encounter, some much easier to answer than others.

The day was especially long for some of us, as BBC Breakfast came and did some live filming, which meant that the organisers,  presenters and some hastily drafted in students had to put in an appearance at 0645. I think that they felt it was worth the effort though, if only to be able to say that they had been on TV.   All in all, the day was a real buzz. Of course the real stars were the insects and other invertebrates which managed to generate real enthusiasm among the delegates and their accompanying teachers. It was wonderful to see how many of the students responded so favourably to the insects, many of whom, at first, were reluctant to get close-up and personal with them. Seeing so many young people “oohing and aahing” rather than” yukking and gagging” really made my day. I really, truly believe, that we will be seeing many of the delegates becoming professional entomologists.

I leave you with a few images to give you the flavour of the day. For more professional images this link should keep you happy.

Fig 3

Early morning preparation, coffee was very much needed

Fig 4

And we’re off to a great start

Fig 5

and it just kept getting better

Fig 6

and better

Fig 7

Some of the team, Luke Tilley, Sally-Ann Spence, Graham Smith, Tim Cockerill, George McGavin and me.

 

Fig 8

A really huge thank you to Laura Coulthard and Helen Foster, from the Harper Adams Marketing and Communications Department, who put their hearts and souls into making sure that the event ran smoothly. We couldn’t have done it without them.

And who knows, perhaps we will do it all again next year 🙂

9 Comments

Filed under EntoNotes, Teaching matters, Uncategorized

Effervescent entomologists – MSc Entomology London Natural History Museum Visit 2015

Last Tuesday (February 4th 2015) I was roused from sleep by the strident tones of my mobile phone telling me that “It’s 5 ‘o’ clock, it’s time to get up”.   Just over an hour later I was standing outside a coach ticking names off my list as yawning MSc student entomologists, PhD students and entomological staff  sleepily settled  down for the four-hour journey to London* Happy Days Coach

Artistic licence – it was still dark when we left!  The name of the coach company is particularly apt.

 Just over four hours later we arrived outside the front of the Natural History Museum on Cromwell Road.NHM front

The front of the Natural History Museum London; when I was a child the beauty of the facade was obscured by soot and grime.

Making our way round to the Exhibition Road entrance, we were met by the legendary Max Barclay @coleopterist,  the Collections Manager for Coleoptera and Hymenoptera.  Pausing only to introduce the students to Charles Darwin and to allow them to take Max & Darwin

Max Barclay introduces Darwin to the students

photographs of the now Twittering Dippy the Diplodocus  @NHM_Dippy, Dippy

Dippy the Diploducus, shortly to be replaced by the Blue Whale skeleton. The blue whale skeleton in my opinion has two advantages over Dippy, first it is real, not a model and second it is actually my first ever biological memory, aged 3.

  we entered the first of our scheduled stops, the Coleoptera section. Beetles

Approximately 220 000 drawers of beetles

Here Max enthralled the students with  the magic of beetles large and small. Max enthralling

Max in full flow

We saw a very small  selection of Alfred Russel Wallace’s 8000+ collection, some of Darwin’s beetles and ARW beetles

A very small selection of Wallace’s collection.

some of the beetles collected by botanist Joseph Banks (as Max pointed out he appeared to be only able to collect large and showy specimens, whereas Darwin’s were much smaller and harder to identify.Bank's beetles

Bank’s beetles – large and showy

  We were also privileged to see a beetle collected by palaeaoanthropologist Louis Leakey whilst excavating hominid remains in the Olduvai Gorge. Max & Leakey's beetle

Max relating the story of how Louis Leakey thought he had found a fossil beetle.

 We then moved on to the Hymenoptera; unfortunately Gavin Broad was not available so we did not have the benefit of a specialist to enthrall us although we did see some interesting specimens such as this Tarantula Hawk Wasp.Pepsis

Pepsis heros – Tarantula Hawk

We then broke for lunch before meeting up with, in my opinion, the most entertaining Dipterist in the World, Erica McAlister, also known as @flygirlNHM. Erica and big flies

Erica with some rather large flies.

She showed us bot fly larvae from unexpected hosts, camels, elephants and rhinoceroses whilst regaling us with amusing and risqué anecdotes of fly mating behaviour.Camle bot flies

Camel bot fly larvae

Erica also showed us some large wax models of insects, my favourite being the model of the aphid, Myzus persicae, which was very good indeed and something I would dearly love to have in my possession.  Erica on the other hand was very keen on the model of a Drosophila mutant 😉Erica & wax aphid

A very large aphid!

Then Erica led us into the depths of the museum to the Tank Room to look at some larger animals, or as Erica described them “The Big Pickles”. Tank room

Part of the Tank Room – lots of pickled fish

Some of the pickles were very big indeed.

Giant squid

A very big pickle – giant squid

After looking at some of the specimens that Darwin had collected whilst on the Beagle, we then went upstairs again, on the way looking at the famous cocoon from above, before we Long way down

Sideways view of the cocoon.

entered the world of the little pickles – spiders and their allies, some poisonous, some venomous.  There is a difference, check it out.Solifugid

A Camel spider; a Solifiguid, despite the common name, they are only very distantly related to spiders.

Scorpions

MSc Students and scorpions; big and relatively harmless, small and deadly (not the students). The gloves protect against the preservative, not the possibility of being bitten!

And then sadly, it was time to get back on the coach and make our way back to Shropshire and Harper Adams University.  A great day out, made particularly enjoyable by the obvious passion that Erica and Max have for their insects.  If you ever get the chance to see Max and Erica extolling the virtues of their pet beasties, make sure you do so.  Effervescent, ebullient, enthusiastic and energetic entomologists both.  I am  sure that I speak for all of us who made the trip when I say “Thank you Max” and “Thank you Erica”.

 

Post script

It was only when I was writing this blog post that I realised that this visit was exactly a year after our previous visit.  The other huge benefit of these visits is that it very important to let the students see that you can work as an entomologist in a museum without being male and grey-bearded 😉  In which context it was very nice to bump into one of our ex-students, in fact one from the very first cohort of the MSc in Entomology after our move from Imperial College to Harper Adams (a story for a future post).

Minty

 

Footnote

*My wife (born in London) insists that it is up to London, but as a Yorkshireman this goes against the grain.  As far as I’m concerned London is down south, so for the sake of marital harmony I have gone for to London  😉

8 Comments

Filed under EntoNotes, The Bloggy Blog

Entomological classics – The Malaise Trap

More years ago than I care to remember, my friends and I were playing the now, very non-PC game of Cowboys and Indians, when we saw through the trees, what we thought was a tent. On sneaking up to it we found that, if it was a tent, it wasn’t very watertight!  There were no sides, instead there was a central panel and the whole thing was made of netting.  What we had actually found, was of course a Malaise trap, although of course we did not know this at the time.  It was only later as an undergraduate that I realised what we had found all those years before.

So exactly what is a Malaise trap and how did it come into being? The Malaise Trap is a relatively new invention.  It was invented by the Swedish entomologist, Dr René Malaise in the 1930s (hence the name) and revealed to a more general entomological audience in 1937 (Malaise, 1937).  It was actually designed as a replacement for the traditional hand-held collecting net, which as Malaise states in the introduction to his paper ‘”Since the time of Linneaus, the technique of catching insects has not improved very much, and we are to-day using the same kind of net as then for our main instrument”.

I was amused, when reading on further, to find that my childhood gaffe of confusing a Malaise Trap with a net was fully justified. Malaise, later in the same paper writes, ”During my extensive travels I have repeatedly found that insects happened to enter my tent, and that they always accumulated at the ceiling-corners in vain efforts to escape at that place without paying any attention to the open tent door”. He then goes on to describe how he conjectured that “a trap made as invisible as possible and put up at a place where insect are wont to patrol back and forth, might catch them much better than any tent, and perhaps better than a man with a net, as a trap could catch them all the time, by night as by day, and never be forced to quit catching when it was best because dinner-time was at hand”.

He thus set about constructing a trap based on the idea of an open tent with a collecting device attached to the central end pole to take advantage of the fact that most insects when encountering an obstacle tend to fly upwards. On reaching the apex of the tent, the only way out is into the collecting device which is filled with a killing agent.  It is in effect, a flight intercept trap, but unlike window traps (subject of a later post), the insects instead of falling into a collecting device, head upwards and collect themselves. Malaise tested his first version of the trap on an expedition to Burma and found them to be a great success “every day’s catch from the traps grew larger and larger, and sorting it required more and more time”. He found the traps particularly good for Diptera and Hymenoptera but also very good for Coleoptera and Noctuid and Sphingid moths.  He also mentions catching Hemiptera.

In outward form, the Malaise Trap has remained fairly unchanged since its invention. The first versions were apparently fairly heavy, having a brass insect collecting cylinder and also only had one opening.  Malaise recognised the disadvantages of the single entrance version and suggested in the 1937 paper that a bilateral model would be more effective.  These followed in due course. Modified versions using plastic cylinders and different netting material were  invented in the 1960s (Gressit & Gressit, 1962; Townes, 1962; Butler, 1965).  Townes’s paper gives a very detailed description of the construction and use of modified Malaise traps (90 pages) in contrast to Butler’s three page description of a cheap and cheerful version made from a modified bed-net.

Nowadays, entomologists world-wide, particularly Dipterists and Hymenopterists, use Malaise traps of various designs and colours, and cost.  In the UK they are available from commercial outlets at prices ranging from £60 to £165. They are extremely effective and we use them to collect insects for our practical classes in the Entomology MSc based at Harper Adams University.

    Malaise traps

Malaise trap in operation, Harper Adams University, Shropshire, UK.

 

References

Butler, G.D. 91965) A modified Malaise insect trap. The Pan-Pacific Entomologist, 41, 51-53

Gressitt, J.L. & Gressitt, M.K. (1962) An improved Malaise Trap. Pacific Insects, 4, 87-90

Malaise, R. (1937) A new insect-trap.  Entomologisk Tidskrift, Stockholm, 58, 148-160

Townes, H. (1962) Design for a Malaise trap. Proceedings of the Entomological Society of  Washington, 64, 162-253

 

Post script

Malaise was not just an entomologist; he was an explorer and a passionate believer in the existence of Atlantis. A detailed biography of this extraordinary character can be found here, including a photograph of the original Malaise trap.

 

Post post script

I was amused to find in the 1949 edition of Instructions for Collectors No. 4a, Insects (Smart, 1949), this somewhat dismissive comment about the Malaise Trap “It is a very novel idea and captures large numbers of insects, but as at present designed is rather cumbersome, and since its design will probably be modified with experience it is not described here

3 Comments

Filed under Entomological classics, EntoNotes, Uncategorized

It’s a Wonderful Life – an Inordinate Fondness for Insects

On Tuesday (4th February) I had the very pleasant task of escorting the MSc Entomology and Integrated Pest management Students from Harper Adams University on a trip to visit the Entomology Department at the Natural History Museum, London.  Despite having to leave at six in the morning all the students were on time (I hesitate to add bright-eyed and bushy-tailed as that would be a patent untruth), but they were there on time.  I almost didn’t make it on time, as being a Yorkshire man, I decided that rather than leave my outside light on all day, I would try to make it to my garden gate in the dark.  Consequently, I had a very close encounter with my garden pond and turned up at the coach with a wet sleeve, a bruised knee, skinned knuckles and one leg of my jeans tastefully decorated with pond-weed.  Still the four-hour journey from Edgmond to London gave me plenty of time to dry out 😉

We arrived as planned at 10 am and were met by Max Barclay , the Collections Manager of Coleoptera  and Hymenoptera, otherwise known as @Coleopterist who first told us that there were 22 000 drawers of beetles surrounding us, much more than either the Dipterists or Hymenopterists would be able to show us!

Beetle Collection

He did confess however, that he was no longer able to claim that beetles were the most speciose group in the world and that the famous quotation might now have to be “ an inordinate fondness for wasps (or possibly flies)”.  Nothing daunted he wowed us with the largest beetles in the world, the aptly named Titans, quickly followed by a few of Charles Darwin’s collection from his famous HMS Beagle trip.

Max Titans   Darwin's

Next came some glorious metallic coloured specimens which looked as if they had been painted; interestingly if they had been painted, they would actually be too heavy to fly.

Gold beetles

Max kept the students, and me, enthralled for some time and then led us upstairs to the Coleopterist’s Offices.  These were fantastic; thanks to an added mezzanine floor, they get to work surrounded by carvings and magnificent windows.  What a fantastic place to work.

Beetle offices  Max talking in offices Office space  Owl

Some of the researchers such as my friend Chris Lyal @Chrislyal are so dedicated that they rarely leave their chairs resulting in dramatic wear patterns 😉

Chris' chair

Next on the agenda was the Hymenopteran collection where we were greeted by Gavin Broad also known as @BroadGavin, the Senior Curator of Hymenoptera.  I don’t want you to think that entomologists are competitive and try to out-do each other, but

Gavin Broad

 we were shown the longest wasp in the world; quite impressive, but not a patch on the Titans 😉

Longest wasp

This was followed by a fantastic selection of wasp nests (of which I only show a few),

Wasp nest 1   Wasp nest 2

including one wearing a tweed jacket and woolly jumper!

Wasp nest jumper

We left the Hymenopteran collection with a reminder of how few taxonomists there are and how much material needs to be sorted and identified; the picture shows just a tiny fraction of the material that comes in each day.

to be sorted

After lunch we joined Erica McAlister @FlygirlNHM, the Collection Manager for Diptera, Fleas and Spiders.  She regaled us with stories

Erica

of bot flies, maggot-ridden corpses, showed us the maggots from the Ruxton murders (a forensic entomology first)

Ruxton maggots

and demonstrated how some flies twerk!  I really should have had a video camera.  I must also not forget to mention how many boxes of Dipteran specimens there are still left to identify and catalogue.  Again this is only a small selection.

Flies to sort

Erica then led us into the bowels of the museum to see some of the largest invertebrates on the planet, giant squids,

Squid

albeit not insects but quite impressive.  These are not on display to the public because they are preserved in formaldehyde, now deemed to be too dangerous to expose to all and sundry, despite the fact that as a school boy and undergraduate I spent a lot of time dissecting specimens preserved in the stuff, and as I recollect, not wearing gloves or face masks!  If you do want to see it, it is possible to take a free tour of the Spirit Collection http://t.co/U49HRoFbhV.  It was then time to get back on the coach and head back to Shropshire and Harper Adams University.   Here I am, captured on film by one of the students @Ceri_Watkins  as I try to make sure that everyone gets back on to the coach!

Loading the bus

All in all, a most enjoyable day and many thanks to our hosts for making it so memorable.

Post Script

I think that the thing that impressed us most was the enthusiasm everyone we met had for their particular group.  Even we general entomologists tend to have a favourite group of insects, in my case aphids, but the passion that Max, Gavin and Erica have and displayed for their specialities, is something very special indeed.  People tend to think of insect taxonomists as weird, introverted, bearded old gentleman.  Anyone who has the privilege to meet any of our three hosts will realise how wrong this stereotype is and will wonder why the Government and Research Councils are so reluctant to adequately fund proper taxonomy.

Without a thorough knowledge of the taxonomy and diversity of insects and allied organisms we will continue to be at risk from invasive pests and diseases.  If we don’t know what is out there, then how can we be ready to protect our crops and environment from outbreaks, or indeed, know how and what to protect to preserve the wonderful biodiversity which our planet supports.  It is time to admit that the funding for the study of vertebrates needs to be scaled back by at least 90% and those resources diverted to the identification and study of the biology and ecology of the dominant animal species of the world, the invertebrates.  In case anyone thinks that I am total partisan, I would also call for 20% of the funding devoted to vertebrate research should be dedicated to training plant scientist and funding whole organism botanical research.  Please spread the message.

10 Comments

Filed under EntoNotes, Teaching matters, The Bloggy Blog