Tag Archives: Elatobium abietinum

Not all aphids live on the underside of leaves

If I were to misquote Jane Austen and state “It is a truth universally acknowledged, that aphids are found on the underside of leaves” most people who know what aphids are would agree without quibbling. If natural enemies could speak, they would probably agree as this quote from an early paper by my former boss, Hugh Evans puts it  “since most aphids are found on the lower surfaces of leaves anthocorids must be wasting time in searching the upper leaf surface” (Evans, 1976). The only enemies that regularly search the upper surface of leaves are parasitoids, which use aphid honeydew as a host-findng cue (e.g. Volkl, 1994), which is where it falls if the leaves above them are infested with aphids.  We know that not all aphids feed on leaves, many using roots, flowers, stems and even tree trunks as their preferred feeding sites, but do all leaf-feeding aphids behave in the same way?

A few species of leaf-dwelling aphid buck the trend and live on the upper surface of leaves. Dogma has it that most leaf-feeding aphids prefer the underside because there are more stomata there and this makes access to the phloem easier.

Aphis grossulariae on the underside of a gooseberry leaf, – only revealed because I turned the leaf over.

Look, however, at a neat experiment that Graham Hopkins and Tony Dixon did (Hopkins & Dixon, 2000). They showed that the birch aphid Euceraphis betulae, which is normally found on the lower surface of leaves, will, if the leaves are held so that the upper surface faces the ground, move from the now facing upward lower surface to the now facing downward upper surface. The answer can’t all be to do with the stomata. That said, in grasses and other monocotyledonous plants, there are more stomata on the upper surface of the leaves andmMany grass-feeding aphids do seem to have a predilection for the upper surface. The green spruce aphid, Elatobium abietinum, another aphid that has a very strong preference for feeding through stomata, is found mainly on the upper surface of spruce needles which are where the stomata are more prevalent (Parry, 1971).

Utamophoraphora humboltdi feeding on the upper surface of Poa annua outside my office.

The Green Spruce Aphid, Elatobium abietinum feeding on the upper surface of spruce needles (Albrecht (2017)

It is possible, however, that the preference for the upper surface of grasses is not entirely due to the relative abundance of stomata there.  The grass aphid, Sipha kurdjumovi for example, although most commonly found feeding on the upper surface of grass and cereal leaves, prefers to settle on a concave ridged surface (Dixon & Shearer, 1974), a characteristic of the upper surface of many grasses  Lewton-Brain, 1904). Another advantage to living on the upper surface of grass leaves is that when grasses want to conserve water they roll inwards along the mid-vein, which has the added benefit of hiding the aphids and protecting them from their natural enemies.

Mainly, however, if you are an aphid, you feed where the stomata are plentiful, hence the tendency for aphids living on monocotyledonous plants to feed mainly on the upper surface of leaves, instead of the lower surface.  Conversely, a leaf-feeding aphid on a dicotyledonous host plant would be expected to feed on the lower surface of the leaves, where there are more stomata.  It also makes sense for those aphids to be underneath the leaf, as there is less chance of them being knocked off by the rain or being dislodged by leaves brushing against each other in the wind.

There are, however, two tree-dwelling aphids in the UK that live on the upper side of the leaves of their woody hosts, the very rare Monaphis antennata on birch (Hopkins & Dixon, 1997) and the less rare large walnut aphid, Panaphis juglandis on walnut (Heie, 1982). So what makes these aphids so contrary? According to Graham Hopkins and Tony Dixon (Hopkins & Dixon, 1997), M. antennata is taking advantage of enemy-free space and to compensate for living on top of the leaf is cryptic to avoid detection by enterprising predators, and has a flattened and contoured body shape to avoid accidental dislodgement.

When it comes to P. juglandis things are bit more conjectural.  Interestingly, despite being a pest in some parts of the world (e.g. Wani & Ahmad, 2014) we don’t know much about it. It is also hard to understand why it has adopted the upper side of the leaf as its habitat.  One very obvious downside

Panaphis juglandis – prominently lined up along the mid-vein of the upper surface of a walnut leaf and displaying their possible unpalatability by their conspicuous yellow and black colouration.  From Influential Points  https://influentialpoints.com/Images/Panaphis_juglandis_nymphs_on-vein_c2013-07-06_18-35-17ew.jpg

is that by so doing it has opened Itself up to competition from the other common walnut aphid, Chromaphis juglandicola, the honeydew of which falls from the leaves like acid rain on to P. juglandis and prevents them living on the same trees (Olson, 1974; Wani & Ahmad, 2014).  In the absence of C. juglandicola it is, however, very successful with a number of life history traits that presumably ensure its survival, although no one has quantified this. First, it is striped yellow and black, a clear warning sign.  Bob Dransfield and Bob Brightwell who run that fantastic site, Influential Points, suggest that perhaps P. juglandis sequesters juglone from its walnut host as a defence against predators. It therefore makes sense to advertise it by being conspicuously coloured.  Second, they also, point out that the way in which the nymphs line up along the mid-vein might act as a form of masquerade mimicry or disruptive camouflage, by looking from certain angles like a blemish caused  by a fungal disease or injury. Neither of these suggestions answer the question as to why it lives on the upper side of leaves. For M. antennata, escape from natural enemies and competition are cited as the reason why it lives where it does.  Neither seem to explain P. juglandis, as it is not, at least according to Olson (1974), safe from predation and parasitism, although there is some indication that it might be ant-attended (Fremlin, 2016), nor is it able to share its host plant with the other walnut specialist, Chromaphis juglandicola. On the other hand, unlike M. antennata, it is most definitely not a rarity.

As they used to say when I was young, “answers on a postcard please”. In the meantime, until someone has the time and inclination to delve into this intriguing conundrum, I guess we should add it to Ole Heie’s list of unsolved aphid mysteries 🙂



Albrecht, A. (2017) Illustrated identification guide to the Nordic aphids feeding on conifers (Pinophyta) (Insecta, Hemiptera, Sternorhyncha, Aphidomorpha). European Journal of Taxonomy, 338, 1-160.

Dixon, A.F.G. & Shearer, J.W. (1974) Factors determining the distribution of the aphid, Sipha kurdjumovi on grasses. Entomologia experimentalis et applicata, 17, 439-444.

Evans, H.F. (1976) The searching behaviour of Anthocoris confusus (Reuter) in relation to prey density and plant surface topography. Ecological Entomology, 1, 163-169.

Fremlin, M. (2016) The large walnut aphid (Panaphis juglandis Goeze) – A few observations. Nature in North-East Essex, 2016, 68-76.

Heie, O.E. (1982) Fauna Entomologia Scandinavia, Vol. 11. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. II. The family Drepanosiphidae. Scandinavian Science Press, Klampenbourg, Denmark.

Heie, O.E. (2009) Aphid mysteries not yet solved/Hemiptera:Aphidomorpha./. Monograph Aphids and Other Hemipterous Insects, 15, 31-48.

Hopkins, G.W. & Dixon, A.F.G. (1997) Enemy-free space and the feeding niche of an aphid. Ecological Entomology, 22, 271-274.

Hopkins, G.W. & Dixon, A.F.G. (2000) Feeding site location in birch aphids (Sternorrhyncha: Aphididae): the simplicity and reliability of cues. European Journal of Entomology, 97, 279-280.

Lewton-Brain, L. (1904). VII. On the anatomy of the leaves of British grasses. Transactions of the Linnaean Society of London, Botany, Series 2, 6, 312-359.

Olson, W.H. (1974) Dusky-veined walnut aphid studies. California Agriculture, 28, 18-19.

Parry, W.H. (1971) Differences in the probing behaviour of Elatobium abietinum feeding on Sitka and Norway spruces. Annals of Applied Biology, 69, 177-185.

Volkl, W. (1994) Searching at different spatial scales: the foraging behaviour of the aphid parasitoid Aphidius rosae in rose bushes. Oecologia, 100, 177-183.

Wani, S.A. & Ahmad, S.T. (2014). Competition and niche-partitioning in two species of walnut aphids. International Journal of Scientific Research and Reviews 3, 120 – 125.

Willmer, C. & Fricker W (1996)  Stomata, Springer, Berlin.


Filed under Aphidology, Aphids

Global Insect Extinction – a never ending story

I have had an unexpectedly busy couple of weeks talking about declines in insect populations.  Back in November of last year I wrote a blog about the sudden media interest in “Insect Armageddon” and followed this up with a more formal Editorial in Annals of Applied Biology at the beginning of the year (Leather, 2018).  I mused at the time if this was yet another media ‘storm in a teacup’ but it seems that the subject is still attracting attention.  I appeared on television as part of TRT World’s Roundtable programme and was quoted quite extensively in The Observer newspaper on Sunday last talking about insect declines since my student days 🙂 At the same time, as befits something that has been billed as being global, a similar story, featuring another veteran entomologist appeared in the New Zealand press.

The TV discussion was quite interesting, the panel included Nick Rau from Friends of the Earth, Lutfi Radwan, an academic turned organic farmer, Manu Saunders from Ecology is Not a Dirty Word and me.  If they had hoped for a heated argument they were out of luck, we were all pretty much in agreement; yes insects did not seem to be as abundant as they had once been, and this was almost certainly a result of anthropogenic factors, intensive agriculture, urbanisation and to a lesser extent climate change.  Unlike some commentators who firmly point the finger at the use of pesticides as the major cause of the declines reported, we were more inclined to towards the idea of habitat degradation, fragmentation and loss.  We also agreed that a big problem is a lack of connection with Nature by large sections of the population, and not just those under twenty.  We also felt very strongly that governments should be investing much more into research in this area and that we desperately need more properly replicated and designed long-term studies to monitor the undeniable changes that are occurring.  I had, in my Editorial and an earlier blog post, mentioned this point and lamented the paucity of such information, so was pleasantly surprised, to receive a couple of papers from Sebastian Schuh documenting long-term declines in Hemiptera and Orthoptera in Germany (Schuh et al., 2012ab), although of course sad, to see yet more evidence for decreasing insect populations.

The idea that insects are in terminal decline has been rumbling on for some time; more than a decade ago Kelvin Conrad and colleagues highlighted a rapid decline in moth numbers (Conrad et al., 2006) and a few years later, Dave Brooks and colleagues using data from the UK  Environmental Change Network revealed a disturbing decline in the numbers of carabid beetles across the UK (Brooks et al., 2012).   In the same year (2012) I was asked to give a talk at a conference organised by the Society of Chemical Industry. Then, as now, I felt that pesticides were not the only factor causing the biodiversity crisis, but that agricultural intensification, habitat loss and habitat degradation were and are probably more to blame.  In response to this quote in the media at the time:

“British Insects in Decline

Scientists are warning of a potential ecological disaster following the discovery that Britain has lost around 7% of its indigenous insect species in just under 100 years.

A comparison with figures collected in 1904 have revealed that around 400 species are now extinct, including the black-veined white butterfly, not seen since 1912, the Essex emerald moth and the short-haired bumblebee. Many others are endangered, including the large garden bumblebee, the Fen Raft spider, which is only to be found in a reserve on the Norfolk/Suffolk border, and the once common scarlet malachite beetle, now restricted to just three sites.

Changes to the insects’ natural habitats have been responsible for this disastrous decline in numbers. From housing and industrial developments to single-crop farming methods, Britain’s countryside has become increasingly inhospitable to its native insects.”

I chose to talk about “Forest and woodland insects: Down and out or on the up?” I used data from that most valuable of data sets, the Rothamsted Insect Survey to illustrate my hypothesis that those insects associated with trees were either doing better or not declining, because of increased tree planting over the last fifty years.  As you can see from the slides from my talk, this does indeed seem to be the case with moths and aphids that feed on trees or live in their shade.  I also showed that the populations of the same species in northern Britain, where agriculture is less intensive and forests and woodlands more prevalent were definitely on the up, and this phenomenon was not just confined to moths and aphids.

Two tree aphids, one Drepanosiphum platanoidis lives on sycamore, the other Elatobium abietinum, lives on spruce trees; both are doing rather well.

Two more tree-dwelling aphids, one on European lime, the other on sycamore and maples, both doing very well.  For those of you unfamiliar with UK geography, East Craigs is in Scotland and Newcastle in the North East of England, Hereford in the middle and to the west, and Starcross in the South West, Sites 2, 1, 6 and 9 in the map in the preceding figure.

Two conifer feeding moth species showing no signs of decline.

On the up, two species, a beetle, Agrilus biguttatus perhaps due to climate change, and a butterfly, the Speckled Wood Pararge aegeria, due to habitat expansion and climate change?

It is important however, to remember that insect populations are not static, they vary from year to year, and the natural fluctuations in their populations can be large and, as in the case of the Orange ladybird, Halyzia sedecimguttata, take place over a several years, which is yet another reason that we need long-term data sets.

The Orange ladybird Halyzia sedecimguttata, a mildew feeder, especially on sycamore.

It is obvious, whether we believe that an ecological catastrophe is heading our way or not, that humans are having a marked effect on the biodiversity that keeps our planet in good working order and not just through our need to feed an ever-increasing population.  A number of recent studies have shown that our fixation with car ownership is killing billions of insects every year (Skórka et al., 2013; Baxter-Gilbert et al.,2015; Keilsohn et al., 2018) and that our fear of the dark is putting insects and the animals that feed on them at risk (Eccard et al.,  2018; Grubisic et al., 2018).  We have a lot to answer for and this is exacerbated by our growing disconnect from Nature and the insidious effect of “shifting baselines” which mean that succeeding generations tend to accept what they see as normal (Leather & Quicke, 2010, Soga & Gaston, 2018) and highlights the very real need for robust long-term data to counteract this dangerous and potentially lethal, World view (Schuh, 2012; Soga & Gaston, 2018).  Perhaps if research funding over the last thirty years or so had been targeted at the many million little things that run the World and not the handful of vertebrates that rely on them (Leather, 2009), we would not be in such a dangerous place?

I am, however, determined to remain hopeful.  As a result of the article in The Observer, I received an email from a gentleman called Glyn Brown, who uses art to hopefully, do something about shifting baselines.  This is his philosophy in his own words and pictures.



Baxter-Gilbert, J.H., Riley, J.L., Neufeld, C.J.H., Litzgus, J.D. & Lesbarrères, D.  (2015) Road mortality potentially responsible for billions of pollinating insect deaths annually. Journal of Insect Conservation, 19, 1029-1035.

Brooks, D.R., Bater J.E., Clark, S.J., Monteith, D.T., Andrews, C., Corbett, S.J., Beaumont, D.A. & Chapman, J.W. (2012)  Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. Journal of Applied Ecology, 49, 1009-1019.

Conrad, K.F., Warren. M.S., Fox, R., Parsons, M.S. & Woiwod, I.P. (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation, 132, 279-291.

Eccard, J.A., Scheffler, I., Franke, S. & Hoffmann, J. (2018) Off‐grid: solar powered LED illumination impacts epigeal arthropods. Insect Conservation & Diversity, https://onlinelibrary.wiley.com/doi/full/10.1111/icad.12303

Estay, S.A., Lima, M., Labra, F.A. & Harrington, R. (2012) Increased outbreak frequency associated with changes in the dynamic behaviour of populations of two aphid species. Oikos, 121, 614-622.

Grubisic, M., van Grunsven, R.H.A.,  Kyba, C.C.M.,  Manfrin, A. & Hölker, F. (2018) Insect declines and agroecosystems: does light pollution matter? Annals of Applied Biology,   https://onlinelibrary.wiley.com/doi/full/10.1111/aab.12440

Keilsohn, W., Narango, D.L. & Tallamy, D.W. (2018) Roadside habitat impacts insect traffic mortality.  Journal of Insect Conservation, 22, 183-188.

Leather, S.R. (2009) Taxonomic chauvinism threatens the future of entomology. Biologist, 56, 10-13.

Leather, S.R. (2018) “Ecological Armageddon” –  more evidence for the drastic decline in insect numbers. Annals of Applied Biology, 172, 1-3.

Leather, S.R. & Quicke, D.J.L. (2010) Do shifting baselines in natural history knowledge therten the environment? The Environmentalist, 30, 1-2.

Schuh, S. (2012) Archives and conservation biology. Pacific Conservation Biology, 18, 223-224.

Schuh, S., Wesche, K. & Schaefer, M. (2012a) Long-term decline in the abundance of leafhoppers and planthoppers (Auchenorrhyncha) in Central Europe protected dry grasslands. Biological Conservation, 149, 75-83.

Schuh, S., Bock, J., Krause, B., Wesche, K. & Scgaefer, M. (2012b) Long-term population trends in three grassland insect groups: a comparative analysis of 1951 and 2009. Journal of Applied Entomology, 136, 321-331.

Skórka, P., Lenda, M., Moroń, D., Kalarus, K., & Tryjanowskia, P. (2013) Factors affecting road mortality and the suitability of road verges for butterflies. Biological Conservation, 159, 148-157.

Soga, M. & Gaston, K.J. (2018) Shifting baseline syndrome: causes, consequences and implications. Frontiers in Ecology & the Environment, 16, 222-230.



Filed under EntoNotes

Not all aphids get eaten – “bottom-up” wins this time

In the lecture that I introduce aphids to our entomology MSc students I show them two quotes that illustrate the prodigious reproductive potential of these fantastic animals.

“In a season the potential descendants of one female aphid contain more substance than 500 million stout men “– Thomas Henry Huxley (1858) and “In a year aphids could form a layer 149 km deep over the surface of the earth.  Thank God for limited resources and natural enemies” – Richard Harrington (1994).

I was a little discomfited whilst researching this article to find that both Huxley and I had been short-changed, although the original quote does hint at the mortality factors that an aphid clone faces during its life.

The original words and the morphed ‘quote’


Both these quotes acknowledge the contribution that both bottom-up and top-down factors have on aphid populations.  For those not familiar with the ecological jargon, ecologists have at times over the last 40 years or so, got quite territorial* about whether herbivorous insect populations are regulated by top-down e.g. predators or bottom-up e.g. host plant quality, factors (e.g. Hunter & Price, 1992).  Who is in charge of an aphid clone’s destiny, natural enemies or the food plant?

Aphids are the favourite food of several insect species; ladybirds (but not all species), lacewing larvae, hoverfly larvae, and also the larvae of some Cecidomyiid flies (Aphidoletes spp.), and Chamaemyiid flies (e.g. Leucopis glyphinivora).  They are also attacked by other Hemipteran species, such as Anthocoris nemorum.   Those insects that make a living almost solely from aphids, are termed aphidophagous and every three years you can, if you feel like it, attend an international conference devoted to the subject 🙂

As well as these specialist predators, aphids are also preyed upon by more generalist predators, such as carabid and staphylinid beetles, harvestmen and spiders. Aphids also provide a nutritious snack for birds and bats.  Faced with all these hungry and voracious predators you might wonder why it is that aphids ever get numerous enough to become pests.  There are two answers, their fantastic reproductive rates and second, aphids, despite appearing soft and squishy, do have anti-predator defence mechanisms.  These range from kicking predators in the face, dropping off the plant, gumming up the jaws of predators by smearing them with wax from their siphunculi, and even jumping out of the way of the predator (Dixon, 1958).  On top of all that,  many are extremely unpalatable and even poisonous.

Some population modelling work from the 1970s explains why aphids can often become pests, as well as introducing us to the concept of population dynamics geography; the endemic and epidemic ridges, and my favourite, the natural enemy ravine (Southwood & Comins, 1976).

The geography of population dynamics from Southwood & Comins (1976)


They suggested that if enough predators are already present in the habitat or arrive shortly after the aphids, then the aphid population either goes extinct or only reaches the “endemic ridge”.  The phenomenal rate at which aphids can reproduce under favourable conditions, usually gets them past the “natural enemy ravine” and up into “epidemic ridge” with only a slight slowdown in population growth.   Evidence for the “natural enemy ravine” is not very convincing and I feel that the suggestion that the dip in population growth at the start of the season is due to intermittent immigration by winged aphids and not the action of polyphagous predators (Carter & Dixon, 1981) is pretty convincing.   That said, later modelling work suggested that the subsequent growth of aphid populations could be slowed down by the action of natural enemies Carter et al., 1982).

Aphids, despite their ability to produce baby aphids extremely quickly, are not equally abundant all year round. Those of us who want to collect aphids know that the best time of year is early in the season, spring and early summer.  This is the time when the plant sap is flowing quickly and is rich in nutrients, especially nitrogen, which aphids need in large quantities.    A characteristic of aphid populations is the way they suddenly disappear during July, a phenomenon known as the “mid-summer or mid-season crash”.  This is not just a phenomenon confined to aphids living on ephemeral herbaceous hosts, it happens to tree-dwelling aphids too e.g. the sycamore aphid, Drepanoisphum platanoidis.  At Silwood Park, where I monitored sycamore aphid populations on fifty-two trees for twenty years**, I saw the same pattern of a rapid build-up followed by an equally rapid collapse every year.  The pattern was the same in both high population and low population years and happened at pretty much the same time every year.  Herbivorous insects are, as you might expect, strongly

High and low population years of sycamore aphid, Drepanosiphum platanoidis at Silwood Park

affected by the quality of their host plant, the availability of nitrogen in the leaves being of most importance (Awmack & Leather, 2002).  Aphids are no exception, and their whole-life cycle is adapted to the ever-changing, but predictable availability of soluble nitrogen and water in their host plants (Dixon, 1977).  Plants become less suitable for aphids as their tissues mature and they lock their nitrogen away in the leaves and other structures, rather than transporting it around in the phloem as they do in spring and autumn (Dixon, 1976).

Aphids respond in two ways to a decline in the nutritional quality of their host plant, they reduce the number of offspring they produce (e.g. Watt, 1979) and those offspring they produce are winged (e.g. Parry, 1977), or if already winged, more likely to take flight and seek new better quality host plants (e.g. Dixon, 1969; Jarosik & Dixon, 1999).  In some aphids there is also an increase in intrinsic mortality (e.g. Kift et al., 1998).

The mid-season crash is not confined to abundant and common aphids, rare aphids show exactly the same changes in their populations, and this is similarly attributed to changes in the nutritional quality of the aphid host plant leading to increased dispersal (e.g. Kean, 2002).

Population crash of the rare aphid Paradoxaphis plagianthi in New Zealand (data from Kean, 2002).

Although some authors, notably Alison Karley and colleagues have suggested that it is the action of natural enemies and not host nutrition that drives the mid-season crash (Karley et al., 2003, 2004), the overwhelming evidence points to the production of winged (alate) morphs and their dispersal, being the major factor in causing the mid-season crash as the graphs below illustrate.

Cereal aphids on wheat showing increased alate production coinciding and subsequent population crash on cereal crops. Data from Wratten, 1975).

Green spruce aphid, Elatobium abietinum on Norway spruce at Silwood Park, showing the population crash and associated increase in the number of winged aphids. Data from Leather & Owuor (1996).

Green spruce aphid in Ireland, population crash associated with marked decline in fecundity and production of winged forms. Data from Day (1984)

Data presented by Way & Banks (1968) might lend some support to the idea that natural enemies cause the mid-season crash.  A close examination of the data however, which might at first glance suggest that keeping natural enemies away, allows aphid populations to prosper, reveals that the process of excluding natural enemies also prevents the dispersal of the winged aphids, which have no choice but to stay on the host plant and reproduce there.

Aphis fabae populations on Spindle bushes from Way & Banks (1968). Top line shows the population kept free of predators until August 2nd, bottom line, exposed to predators.

Moreover, as the authors themselves state “the rise to peak density in each year, coincided with an enormous increase in the proportion of individuals destined to become alatae” (Way & Banks, 1968).   I do not dispute that natural enemies have an effect on aphid populations, but in my opinion, the evidence does not support the hypothesis that they are the driving force behind the mid-season crash.  Rather, the major factor is the reduction in host quality, caused by a decline in the nutritional status of the plant and overcrowding of the aphids, leading to reduced fecundity and an increase in winged dispersers.

I don’t deny that the natural enemies do a very good mopping-up job of those aphids that are left behind, but they are not the force majeure by any stretch of the imagination. Most aphids do not get eaten 🙂



Awmack, C.S. & Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817-844.

Carter, N. & Dixon, A.F.G. (1981) The natural enemy ravine in cereal aphid population dynamics: a consequence of predator activity or aphid biology? Journal of Animal Ecology, 50, 605-611.

Carter, N., Gardner, S.M., Fraser, A.M., & Adams, T.H.L. (1982) The role of natural enemies in cereal aphid population dynamics. Annals of Applied Biology, 101, 190-195.

Day, K.R. (1984) The growth and decline of a population of the spruce aphid Elatobium abietinum during a three  study, and the changing pattern of fecundity, recruitment and alary polymorphism in a Northern Ireland Forest. Oecologia, 64, 118-124.

Dixon, A.F.G. (1958) The escape responses shown by certain aphids to the presence of the coccinellid Adalia decempunctata (L.). Transactions of the Royal Entomological Society London, 110, 319-334.

Dixon, A.F.G. (1969) Population dynamics of the sycamore aphid Drepanosiphum platanoides (Schr) (Hemiptera: Aphididae); migratory and trivial flight activity. Journal of Animal Ecology, 38, 585-606.

Dixon, A.F.G. (1976) Factors determining the distribution of sycamore aphids on sycamore leaves during summer. Ecological Entomology, 1, 275-278.

Dixon, A.F.G. (1977) Aphid Ecology: Life cycles, polymorphism, and population regulation. Annual Review of Ecology & Systematics, 8, 329-353.

Harrington, R. (1994) Aphid layer. Antenna, 18, 50-51.

Hunter, M.D. & Price, P.W. (1992) Playing chutes and ladders – heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73, 724-732.

Huxley, T.H. (1858) On the agmaic reproduction and morphology of Aphis – Part I. Transactions of the Linnean Society London, 22, 193-219.

Jarosik, V. & Dixon, A.F.G. (1999) Population dynamics of a tree-dwelling aphid: regulation and density-independent processes. Journal of Animal Ecology, 68, 726-732.

Karley, A.J., Parker, W.E., Pitchford, J.W., & Douglas, A.E. (2004) The mid-season crash in aphid populations: why and how does it occur? Ecological Entomology, 29, 383-388.

Karley, A.J., Pitchford, J.W., Douglas, A.E., Parker, W.E., & Howard, J.J. (2003) The causes and processes of the mid-summer population crash of the potato aphids Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research, 93, 425-437.

Kean, J.M. (2002) Population patterns of Paradoxaphis plagianthi, a rare New Zealand aphid. New Zealand Journal of Ecology, 26, 171-176.

Kift, N.B., Dewar, A.M. & Dixon, A.F.G. (1998) Onset of a decline in the quality of sugar beet as a host for the aphid Myzus persicaeEntomologia experimentalis et applicata, 88, 155-161.

Leather, S.R. & Owuor, A. (1996) The influence of natural enemies and migration on spring populations of the green spruce aphid, Elatobium abietinum Walker (Hom., Aphididae). Journal of Applied Entomology, 120, 529-536.

Parry, W.H. (1977) The effects of nutrition and density on the production of alate Elatobium abietinum on Sitka spruce. Oecologia, 30, 637-675.

Southwood, T.R.E. & Comins, H.N. (1976) A synoptic population model.  Journal of Animal Ecology, 45, 949-965.

Watt, A.D. (1979) The effect of cereal growth stages on the reproductive activity of Sitobion avenae and Metopolphium dirhodum. Annals of Applied Biology, 91, 147-157.

Way, M.J. & Banks, C.J. (1968) Population studies on the active stages of the black bean aphid, Aphis fabae Scop., on its winter host Euonymus europaeus L. Annals of Applied Biology, 62, 177-197.

Wratten, S.D. (1975) The nature of the effects of the aphids Sitobion avenae and Metopolophium dirhodum on the growth of wheat. Annals of Applied Biology, 79, 27-34.


Post script

For those interested this is how Huxley arrived at his number of potential descendants, and here I quote from his paper,  “In his Lectures, Prof. Owen adopts the calculations taken from Morren (as acknowledged by him) from Tougard that a single impregnated ovum  of Aphis may give rise, without fecundation, to a quintillion of Aphides.” I have not, so far, been able to track down Tougard.

Morren, C.F.A. (1836) sur le Puceron du Pecher, Annales des Sciences Naturelle series 2. vi.

You may not know what a grain is, so to help you visualise it, 7000 grains equals a pound so 2 000 000 grains gives you 286 pounds, or 20 stone or approximately 130 Kg depending on where you come from J


*and generated some magnificent paper titles and quite acrimonious responses J Hassell, M.P., Crawley, M.J., Godfray, H.C.J., & Lawton, J.H. (1998) Top-down versus bottom-up and the Ruritanian bean bug. Proceedings of the National Academy of Sciences USA, 95, 10661-10664.

**A true labour of love as I also counted maple aphids, orange ladybirds, winter moth larvae and any of their predators and parasites that I came across J



Filed under Aphidology, Aphids

A Christmas Aphid

A few weeks ago I was contacted by a researcher from the One Show.  They were interested in the possibility of doing a festive piece about what people bring into the house with them on Christmas trees with the idea that George McGavin would shake a Christmas tree over a piece of white paper and tell the audience all about the insects that fell out;  a typical media “how gross nature” is piece.

The researcher was somewhat disappointed when I told her that being winter  that there would be relatively little hiding in the tree, especially if it was a commercially reared cut tree bought from a garden centre or other retail outlet.  Cut Christmas trees in the UK tend to be harvested from October onwards so the chances are that your tree has lain about for at least a month before you bring it into your house and by that time, any sensible winter active herbivore has long departed for fresher trees.  Although conifer trees have a large number of insect species associated with them, most of them spend the winter either off the tree or as inactive eggs hidden under the bark or as eggs actually laid inside the needles e.g. the pine sawfly Neodiprion sertifer.  You would probably find a few opportunistic spiders and possibly some mites and bark lice, but not much else unless you had a potted tree or one that had only recently been felled.  The other thing that would influence what you would find is of course what species of tree you had bought.  Gone are the days when the Christmas tree and Norway spruce (Picea abies) were one and the same.  I guess my caveating and pessimistic reply proved too much for the researcher as I never heard back from her.

The one insect I had waxed lyrical about was of course an aphid, the green spruce aphid, Elatobium abietinum to be precise.   There are a number of aphid species that make a living on spruce trees, some of them quite large and spectacular such as the greater black spruce aphid, Cinara piceae, but like most aphids, they overwinter as eggs (Leather, 1992).


The greater black spruce aphid, Cinara piceae (Photograph courtesy of http://influentialpoints.com/Gallery/Aphids_on_spruce_Picea_in_Britain.htm)

The green spruce aphid, E. abietinum or Elatobium as it is commonly known, (there is only one species in the genus), overwinters in the UK and most other parts of the world, as an adult or immature stage (nymph) (Nicol et al., 1998).

The adult is small, green and inconspicuous, and quite difficult to see unless you are actually looking for them.

Elatobium and nymphs

The green spruce aphid, Elatobium abietinum and nymphs.

The green spruce aphid is a native of Europe and normally attacks Norway spruce.  They avoid current year needles as these tend to be distasteful to them (the chemistry of young spruce needles is pretty nasty and makes them unsuitable hosts for the aphids) and feed on the previous year and older needles.  Spruce needles, even older ones, are not particularly nutritious, so the aphid injects a toxic material in its saliva that makes the needles more nutritious by encouraging nitrogen mobilisation (Kloft & Erhardt, 1959).  Their populations build up during the spring and towards the end of May and beginning of June, they take flight and the trees seem relatively free of aphids (Bevan, 1966).  As they are so small, they are most obvious after they have gone, either by the damage they cause, premature senescence of the needles as shown in the photograph above, premature needle drop or by the presence of a large number of ladybird larvae.  When I worked for the Forestry Commission as an entomologist, I quite often received phone calls from distressed foresters who had sprayed the blue beetles damaging their spruce trees!

Although they are difficult to find during the summer months they are still there; this summer collapse of singe-host aphids is quite common (Karley et al., 2004).  In the autumn,  Elatobium populations begin to build up and as they do not overwinter as eggs, they are able to continue reproducing through the winter months (Powell & Parry, 1976). Sitka spruce, Picea sitchensis, the most commonly grown conifer in the UK, is a native of North America and as such has very low resistance to Elatobium and displays an almost hypersensitive response to the toxic saliva produced by the aphid.

If it is a particularly mild winter then the spruce trees are likely to show severe signs of damage by June and July.  After several mild winters spruce trees may end up with only current year needles present, which has a severe effect on their growth and appearance.

Elatobium damage needles

Branches of Sitka spruce with only current year needles present after a severe Elatobium abietinum infestation

Elatobium damage trees

Sitka spruce trees showing discoloured needles after attack by Elatobium abietinum.

It may be small, inconspicuous and not worth a TV appearance, but  Elatobium abietinum is now a pest with a world-wide distribution and an international reputation.


Bevan, D. (1966). The green spruce aphis Elatobium (Neomyzaphis) abietinum Walker. Scottish Forestry 20, 193-201.

Karley, A. J., Parker, W. E., Pitchford, J. W. &Douglas, A. E. (2004). The mid-season crash in aphid populations: why and how does it occur? Ecological  Entomology 29, 383-388.

Kloft, W. & Ehrhardt, P. (1959). Unterschungen uber Saugtatigkeit und Schadwirkung der Sitkafichtenlaus, Liosomuphis abietina (Walk.), (Neomyzaphis abietina Walk.).  Phytopathologie Zeitzschrqt 35, 401 – 410.

Leather, S. R. (1992). Aspects of aphid overwintering (Homoptera: Aphidinea: Aphididae). Entomologia Generalis 17, 101-113.

Nicol, D., Armstrong, K. F., Wratten, S. D., Walsh, P. J., Straw, N., Cameron, C. M., Lahmann, C. & Frampton, C. M. (1998). Genetic diversity of an introduced pest, the green spruce aphid Elatobium abietinum (Hemiptera: Aphididae) in New Zealand and the United Kingdom. Bulletin of Entomological Research 88, 537-543.

Powell, W. & Parry, W. H. (1976). Effects of temperature on overwintering populations of the green spruce aphid, Elatobium abietinum.  Annals of Applied Biology 82, 209-219.

Sullivan, C.R. (1965) Laboratory and field investigations on the ability of eggs of the European Pine Sawfly, Neodiprion sertifer (Geoffroy) to withstand low winter temperatures.  Canadian Entomologist, 97, 978-993



During the 1980s when ‘Acid Rain’ was very much in the news, Elatobium damage was often mistaken as a symptom of acid rain in the UK.



Filed under Aphidology, Aphids

A Winter’s Tale – aphid overwintering

Aphids that live in temperate or boreal regions have to be able to survive overwinter. Aphids, depending on species, are able to pass winter in two ways. If they are holocyclic i.e. possess an egg-laying stage, they usually overwinter as eggs. Aphid eggs are extremely cold-hardy; they have been reported to have super-cooling points of about -42oC (Somme ). If laid on a woody host, eggs are usually laid in the bud axils as in the case of the apple aphid, Aphis pomi, the black bean aphid Aphis fabae and the bird cherry aphid, Rhopaloishum padi.

aphid eggs

In some instances, such as the sycamore aphid, Drepanosiphum platanoidis, eggs are laid directly on the tree bark or in crevices in the bark or even in lichen growing on the bark.  See if you can spot the eggs in the picture below.


If however, the aphid in question lives on an herbaceous host, the eggs may be laid directly on the ground, on or amongst fallen leaves or at the base of grass tussock.

The other strategy adopted by those aphids that are anholocyclic, such as the green spruce aphid, Elatobium abietinum, is to pass the winter as an active stage, either as an adult or immature nymph. Those holocyclic aphids that have anholcyclic strains are also able to adopt this strategy. Despite their soft bodies and fragile appearance, aphids have quite low super-cooling points values such as -26oC having been reported (Griffiths & Wratten, 1979).

A potential advantage of using an active overwintering stage and not an egg, is that if they survive the winter, they are able to start reproducing sooner, particularly if they are a host –alternating aphid, where the aphids hatching from eggs, have to spend time developing and reproducing on the primary woody host before being able to migrate to the secondary hosts. This also applies, to a lesser extent, to those holoyclic aphids living on herbaceous plants, although the temporal advantage is not as great. One would assume that given the relative cold-hardiness attributes of aphid eggs and adults that in a country such as the UK where winter temperatures below -10oC are both infrequent and short lasting, winter survival of aphids would be extremely high if not guaranteed. This is not the case. For example, eggs mortality of the bird cherry aphids is typically around 70-80% as shown in my first ever publication (no fancy graphics packages in those days, just Letraset , Indian ink, stencils and tracing paper). Actually people had measured aphid egg mortality much earlier than this (Gillette, 1908) but I was the first person to monitor mortality throughout the winter and show that it occurred at a steady rate irrespective of the severity of the winter.

 Egg survival

It is actually a function of the length of the winter that determines how many eggs survive, the longer the winter the greater the mortality.

Egg mortality

This level of mortality is typical for all aphid species for which I have data (Leather, 1993). Some of this mortality can be attributed to predation, but most of it is intrinsic (Leather, 1981), possibly due to cryo-injury.

Similarly, those aphids that overwinter as adults or nymphs, despite their ability to super-cool to temperatures below -20oC, experience even greater levels of mortality as shown elegantly by Jon Knight and Jeff Bale in 1986 studying overwinter survival of the grain aphid Sitobion avenae near Leeds.

Knight & Bale

In fact one wonders how any aphids at all survive winter this way, but they certainly do if the winters are mild enough, as in the case of Myzus persicae and Sitobion avenae in southern England and E. abietinum throughout most of its range (Day et al., 2010). An interesting anomaly is Iceland where hot springs abound and the bird cherry aphid is able to survive anholocyclically on grasses growing around the springs whereas in other countries with similar winter temperatures it would only be able to survive as the egg stage.

Despite the importance of winter to aphid population dynamics we still know very little about their winter ecology, our knowledge being confined to a handful of economically important species. Despite the discomfort of field work in the winter this is an area which would be very rewarding to anyone in need of an interesting and good research project.  Finger-less mittens are, however, definitely recommended 😉

Useful references

Bale, J. S. (1996). Insect cold hardiness: a matter of life and death. European Journal of Entomology 93, 369-382. http://www.eje.cz/pdfs/eje/1996/03/09.pdf

Day, K. R., Ayres, M. P., Harrington, R. & Kidd, N. A. C. (2010). Interannual dynamics of aerial and arboreal spruce aphid populations. Population Ecology 52, 317-327. http://link.springer.com/article/10.1007/s10144-009-0190-0#page-1

Gillette, C. P. & Taylor, E. P. (1908). A few orchard plant lice. Colorado Agricultural Experimental Station Bulletin, 113, 1-47.

Griffths, E. &Wratten, S. D. (1979). Intra-and inter-specific differences in cereal aphid low temperature tolerance. Entomologia experimentalis et applicata 26, 161-167. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.1979.tb02912.x/abstract

Knight, J. D. & Bale, J. S. (1986). Cold hardiness and overwintering of the grain aphid Sitobion avenae. Ecological Entomology 11, 189-197.

Leather, S. R. (1980). Egg survival in the bird cherry-oat aphid, Rhopalosiphum padi. Entomologia experimentalis et applicata 27, 96-97. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.1980.tb02951.x/abstract

Leather, S. R. (1981). Factors affecting egg survival in the bird cherry-oat aphid, Rhopalosiphum padi. Ent omologia experimentalis et applicata 30, 197-199. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.1981.tb03097.x/abstract

Leather, S. R. (1993). Overwintering in six arable aphid pests: a review with particular relevance to pest management. Journal of Applied Entomology 116, 217-233. http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0418.1993.tb01192.x/abstract;jsessionid=9FC2ED8174E96317F192CF42A19092FE.f03t03?deniedAccessCustomisedMessage=&userIsAuthenticated=false

Strathdee, A. T., Howling, G. G. & Bale, J. S. (1995). Cold hardiness of overwintering aphid eggs. Journal of Insect Physiology 41, 653-657. http://www.sciencedirect.com/science/article/pii/002219109500029T


Filed under Aphidology, Aphids