Tag Archives: Euceraphis punctipennis

Mellow Yellow – Not all aphids live on green leaves

I have written before about aphids and how their quest for the ideal food plant may explain the evolution of host alternation; we find that most aphid species tend to be associated with rapidly growing meristems, or newly flushing leaves (Dixon, 2005). Some aphids are so keen on young plant tissue that they ‘engineer’ youth in their host plants, injecting salivary compounds and forming leaf–rolls, pseudo-galls and galls, all of which act as nutrient sinks and lengthen the time that the modified leaves stay green and nutrient-rich

leaf roll Rhopalosiphum

 Leaf-roll caused by Rhopalosiphum padi on bird cherry, Prunus padus.

Leaf roll Myzus cerasi

Pronounced leaf roll pseudo-gall caused by Myzus cerasi on Prunus avium.

Non host-alternating (autoecious) aphids, such as the sycamore aphid Drepanosiphum platanoidis, the maple aphid, Periphyllus testudinaceus, or the birch aphid, Euceraphis punctipennis, have no such escape route; they are confined to their tree host for the year, albeit, they can, if they ‘wish’, fly to another tree of the same species, but essentially they are held hostage by the their host plant. As the season progresses, leaf nutritional and physical properties change; going from young tender green leaves, with high nitrogen and water contents, to mature, tough leaves, low in nitrogen and water to yellow senescing leaves with again, higher nitrogen levels (Awmack & Leather, 2002) and finally of course, dead brown leaves of no nutritional value.

Seasonal changes

Sycamore and maple aphids, enter a state of suspended animation ‘summer aestivation’ (Essig, 1952; Dixon, 1963), whilst birch and poplar aphids, whose hosts plants often produce new growth during the year, ‘track’ these new leaves (Wratten, 1974; Gould et al., 2007). As far as these aphids are concerned young tissue is their best food source, with senescent tissue being second best and mature leaves being least favoured. During the summer they will, however, take advantage of mature leaves that are prematurely senescing, such as those attacked by leaf diseases such as tar spot. I have often found sycamore aphids feeding and reproducing on these infected leaves whilst those aphids on neighbouring mature leaves remain in aestivation.

Tar spot 2

Effects of tar spot on sycamore leaves

Host-alternating (heteroecious) aphids on the other hand are somewhat different. As their life cycle includes a programmed migration back to their primary tree host in autumn, those autumn morphs (oviparae) are adapted to senescent tissue (Leather & Dixon, 1982, Kundu & Dixon, 1993, 1994). Similarly, the spring morphs (fundatrices and fundatrigeniae) are adapted to young leaves and find it difficult or impossible, to make a living on senescent leaves.
Morphs and host age

There are yet other aphids, such as the green spruce aphid Elatobium abietinum, the pine aphid, Eulachnus agilis and the black pecan aphid, Melanocallis caryaefoliae, that are senescence specialists. In contrast to the flush specialists, these aphids engineer senescence, also using salivary compounds,  and are unable to survive on young foliage (Bliss, 1973; Fisher, 1987; Cottrell et al., 2009).

Elatobium in action

Elatobium abietinum ‘engineering’ senescence on spruce needles and avoiding young flushing tissue.

It is interesting to speculate that perhaps these tree-dwelling non host-alternating aphids are secondarily derived from the autumn part of the life-cycle of host-alternating aphids. After all, if non host-alternating aphids on herbaceous host plants are off-shoots of the summer part of the host-alternating life-cycle why not the other way round. There is just so much more to learn about aphids. Yet another reason why I love aphids so much 😉

References

Awmack, C.S. & Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817-844.

Bliss, M., Yendol, W.G., & Kearby, W.H. (1973) Probing behaviour of Eulachnus agilis and injury to Scotch pine. Journal of Economic Entomology, 66, 651-655.

Cottrell, T.E., Wood, B.W. & Ni, X. (2009) Chlorotic feeding injury by the Black Pecan Aphid (Hemiptera: Aphididae) to pecan foliage promotes aphid settling and nymphal development. Environmental Entomology, 38, 411-416.

Dixon, A.F.G. (1963) Reproductive activity of the sycamore aphid, Drepanosiphum platanoides (Schr) (Hemiptera, Aphididae). Journal of Animal Ecology, 32, 33-48.

Dixon, A.F.G. (2005) Insect Herbivore-Host Dynamics. Cambridge University Press, Cambridge.

Fisher, M. (1987) The effect of previously infested spruce needles on the growth of the green spruce aphid, Elatobium abietinum. Annals of Applied Biology, 111, 33-41.

Gould, G.G., Jones, C.G., Rifleman, P., Perez, A., & Coelman, J.S. (2007) Variation in Eastern cottonwood (Populus deltoides Bartr.) phloem sap content caused by leaf development may affect feeding site selection behaviour of the aphid, Chaitophorous populicola Thomas (Homoptera: Aphididae). Environmental Entomology, 36, 1212-1225.

Kundu, R. & Dixon, A.F.G. (1993) Do host alternating aphids know which plant they are on? Ecological Entomology, 18, 61-66.

Kundu, R. & Dixon, A.F.G. (1994) Feeding on their primary host by return migrants of the host alternating aphid, Cavariella aegopodii. Ecological Entomology, 19, 83-86.

Leather, S.R. & Dixon, A.F.G. (1981) Growth, survival and reproduction of the bird-cherry aphid, Rhopalosiphum padi, on it’s primary host. Annals of applied Biology, 99, 115-118.

Wratten, S.D. (1974) Aggregation in the birch aphid, Euceraphis punctipennis (Zett.) in relation to food quality. Journal of Animal Ecology, 43, 191-198.

 

Post script

A lot of what I describe comes from a talk I gave in 2009 at a workshop in Oxford on autumn colours (the output of which was Archetti, M., Döring, T.F., Hagen, S.B., Hughes, N.M., Leather, S.R., Lee, D.W., Lev-Yadun, S., Manetas, Y., Ougham, H.J., Schaberg, P.G., & Thomas, H. (2009) Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends in Ecology & Evolution, 24, 166-173. I always meant to write the talk up as an Opinion piece but procrastination set in badly. I was somewhat annoyed with myself when earlier this year this excellent piece by the legendary ecologist and entomologist, Tom White, appeared; I have only myself to blame, six years is a very long bit of procrastination 😉

White, T.C.R. (2015) Senescence-feeders: a new trophic sub-guild of insect herbivores Journal of Applied Entomology, 139, 11-22.

 

Post post script

This post is dedicated to my eldest son, Sam, who died quietly in his sleep, at a tragically young age, December 23rd 2010.   It would have been his birthday on the 21st May.  Despite being a molecular biologist, (he worked at the Sanger Institute), he was as green as you can get, a great naturalist and conservationist, with an incredibly gentle soul. He strongly believed in conserving the World’s natural resources and amused colleagues by sticking up signs in the toilets at the Sanger, which read “If its yellow let it mellow, if its brown flush it down”.

Sampsa

 

He is sorely missed by us all. He also had more Nature papers than me 😉

Parkhill, J., Achtman, M., James, K.D. et al., (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitides. Nature, 404, 502-506

Parkhill, J., Dougan, G. , James, K.D. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848-852.

Parkhill, J., Wren, B.W., Thomson, N.R. et al., (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 413, 523-527.

Parkhill, J., Sebaihia, M., Preston, A. et al., (2003) Comparative analysis of the genome sequences of Bordetella pertussis,   Bordetella parapertussis and Bordetella bronchiseptica. Nature Genetics, 35, 32-40

Wood, V., Gwilliam, R. Rajandream, M.A. et al., (2002) The genome sequence of Schizosaccharomyces pombe . Nature, 415, 871-880

 

 

Advertisements

6 Comments

Filed under Aphidology, Aphids

Not all Aphids are Pests

Unfortunately when you mention the word aphid most people’s first thought is PEST!  It is true that they are perhaps the most important insect pests of crops

Larson             Punk aphid

in temperate regions of the world, and that in the UK they are serious pests of cereals, sugar beet, beans, vegetables and glasshouse crops.  It has been estimated that crop losses due to feeding damage and/or virus transmission exceed £100 million per annum http://www.scri.ac.uk/research/pp/pestanddisease/insectmiteecology/virusvectorinteractions .  On the other hand this is down to only about 250 species which out of a total of 5000 described species is not very many (about 5%).  Not only are most aphids playing useful roles in ecosystems acting as food sources to other insects, arthropods and dare I say it, vertebrates 😉 . They also play an important part in the decomposition cycle (Choudhury, 1985).  The thing that most people don’t realise is that some aphids are incredibly rare. Some are rare because of their close associations with rare plants, others rare because of a complex relationship with ants https://simonleather.wordpress.com/2013/12/05/not-all-aphids-live-on-leaves/ and some for no apparent reason at all.  For example, there are two aphid species that live on bird cherry (Prunus padus),  Rhopalosiphum padi, an extremely common aphid, host-alternating between bird cherry and grasses, and a major pest of cereals in temperate countries (Leather et al., 1989) and Myzus padellus, host-alternating between bird cherry and members of the Labiatae (Galeopsis spp. (Hemp nettle)) and Scrophulariaceae (Pedicularis spp. and Rhinanthus sp., members of the snapdragon family).  In all my many years of sampling bird cherry I have never seen Myzus padellus, yet their life-cycles and habits are strikingly similar, so why is the latter so rare?  No one knows.

Similarly, on birch we find, not very often because it is so rare, Monaphis antennata , which unlike most aphids, lives as a nymph (immature) on the upper side of birch leaves, possibly

Monaphis

to escape natural enemies as the much more common species of birch aphids, Euceraphis punctipennis and Betulaphis quadrituberculata like the majority of leaf-feeding aphids, both live on the underside of leaves, which is where aphid predators normally forage (Hopkins & Dixon 1997). I have seen this aphid once, shown to me by the late Nigel Barlow http://newzealandecology.org/nzje/free_issues/NZJEcol30_1_1.pdf  when he visited me at Silwood Park in the late 1990s.  Despite repeated visits to the same trees that we found Monaphis on, I have never seen it again.  So far no one has been able to explain why it is so rare (Hopkins et al., 1998).  Interestingly enough, apart from keys and identification manuals, it has rarely been written about; Web of Knowledge reveals only four research papers on it.

There are many more rare aphids hiding out there, a number of which have only ever been seen by the entomologist who first described them and no doubt even more who have not yet been found, as is the cases with many more insect species  – not enough insect taxonomists, not enough funding.

Choudhury, D. (1985) Aphid honeydew – a re-appraisal of Owen and Wiegert’s hypothesis. Oikos, 45, 287-289. http://www.jstor.org/discover/10.2307/3565718?uid=3738032&uid=2&uid=4&sid=21103382740253

Hille Ris Lambers, D. & Rogerson, J.P. (1946) A new British aphid from Prunus padus L.  Myzus padellus sp n. (Hemiptera, Aphididae). Proceedings of the Royal Entomological Society of London, 15, 101-105 http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3113.1946.tb00833.x/abstract

Hopkins, G.W. & Dixon, A.F.G. (1997) Enemy-free space and the feeding niche of an aphid. Ecological Entomology, 22, 271-274. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2311.1997.00075.x/full

Hopkins, G.W. & Dixon, A.F.G. (2000)  Feeding site location in birch aphids (Sternorrhyncha: Aphididae): the simplicity and reliability of cues.  European Journal of Entomology, 97, 279-280 http://www.eje.cz/pdfs/eje/2000/02/19.pdf

Hopkins, G.W., Thacker, J.I., & Dixon, A.F.G. (1998) Limit to the abundance of rare species: an experimental test with a tree aphid. Ecological Entomology, 23, 386-390. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2311.1998.00163.x/full

Leather, S.R., Walters, K.F.A., & Dixon, A.F.G. (1989) Factors determing the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: a study and review. Bulletin of Entomological Research, 79, 345-360. http://journals.cambridge.org/download.php?file=%2FBER%2FBER79_03%2FS0007485300018344a.pdf&code=8d6d2144666846ebb5d589f01343f27c

7 Comments

Filed under Aphidology, Aphids