Tag Archives: insect declines

Pick & Mix 63 – haikus, red leaves, insect opera, insect declines (again), nature friendly cities, dung beetles, bird names and pollinators

Ever wondered why some young leaves are red?  Ray Cannon explains

Winners of the 2021 Hexapod haiku contest – I did enter but……..  ☹

Really interesting article (lots of graphics) about how eating habits have changed in the USA since 1970

Like Opera, interested in nature then you might want to catch this – Locust: The Opera

Providing regular water supplies for humans may be causing insect declines in the tropics

There are over 7,000 English names for birds – here’s what they teach us about our changing relationship with nature

Introducing new dung beetles to Australia: battling the cane toad’s legacy

What would a truly Nature-friendly city look like?

Ecomimicry: the nature-inspired approach to design that could be the antidote to urban ‘blandscapes’

Disentangling the facts from the myths about pollinators – Einstein’s bees, sound bites and vitamins

1 Comment

Filed under Pick and mix

Planes, trains and automobiles – insect killers?

I couldn’t not use this – it is (sadly) one of my favourite films 😊

Anyone who has driven (or walked) along a road will have come across roadkill, be it squirrels, pheasants, badgers, deer or even something more exotic, perhaps it us only us entomologists who notice the squashed invertebrates ☹

Dead carabids and mayflies Shay Lane, Staffordshire, 8th June 2021

But, lets leave the roadkill for a moment, and in the spirit of the title of the film, start in the air. The first thing I discovered when I started to search for the effects of aircraft on insects is the paucity of literature on the subject – it turns out that people are much more interested in stopping disease carrying insects being transported by air or, and coming as a bit of a surprise to me, stopping insects causing plane crashes (House et al., 2020; Grout & Russell, 2021). The aircraft industry is so concerned about the physical dangers posed to ‘planes by insects that NASA actually have a Bug Team dedicated to developing insect proof aircraft.

I am, however, more concerned about how dangerous aircraft are to insects. First, we need to know how many insects are up there and what the probability of them being struck and killed by aircraft is. I’m guessing that bug strike is pretty common, otherwise NASA wouldn’t have a Bug Team. The majority of insects in the air are found at 300-600 m, although this does vary in relation to time of day (Reynolds et al., 2005). Getting a figure for the actual number of insects in the air is as you might expect, actually quite difficult.  The first attempt to trap and collect insects using an aircraft was in 1926 in Louisiana (USA) using a specially designed trap (Glick, 1939).  These do not seem to have been particularly effective as 5 years of trapping, involving 1528 hours of flying, caught just under 30 000 insects (Glick, 1939).  Those of us who have operated pitfall traps for any length of time would consider this a very modest haul 😊

Glick (1939) The aircraft insect trap

That said, the exercise was obviously more hazardous than even collecting insects from roundabouts as this very laconic extract highlights:

 “The skill of the pilots who flew the collecting airplanes is evidenced by the fact that no fatalities occurred.  Only one major accident occurred, when a forced landing resulted in the destruction of the craft and injury to both the pilot (McGinley) and the writer. Such mishaps must be expected in a more or less hazardous undertaking.”

The distribution of catch number was very similar to that reported from the more recent UK study using radar (Reynolds et al., 2005) and is reinforced by this statement from the NASA Bug Team; “The reason we do these tests at low altitudes or do a lot of takeoffs and landings is because bug accumulation occurs at anywhere from the ground to less than 1,000 feet,” said Mia Siochi, a materials researcher at NASA Langley”.

Given the number of flights made globally and the investment being made into protecting aircraft from bug strike, I would assume that the number of insects being killed by aircraft worldwide is probably very high. I am sure that someone with the skill, time and inclination, can probably come up with a fairly realistic figure.  Over to you Dear Readers.

Next up, if we keep to the film title, are trains.  There has been a bit more work looking at the damage that trains do to insects, not a lot, but something is better than nothing.  Work collecting train kill from railway lines showed that snails were particularly vulnerable to being run over, similar to the effects on trail-following ermine moth caterpillars that I observed in Finland in 1981, with Ephemeroptera (Mayflies) in second place (Pop et al., 2020). This, as the authors suggest, was almost certainly due to the time of year and the presence of a lake nearby. Unfortunately no one has done the equivalent of a train splatometer which might be rewarding as these observations from correspondence in British Birds magazine suggest that locomotive engines are causing some mortality to flying insects.  Over to you Bug Life. How about getting the train companies to fit splatometers?

Finally, cars and their effect on insect life. There is anecdotal evidence out there, after all as drivers we have all seen moths in our headlights at night and used our windscreen washers and wipers to try and remove dried on insect corpses and their haemolymph from our front windscreens.

An observation by Ian Bedford

My front bumper – sadly (or perhaps not) much less insect spattered than in the past

Yes, anecdotally we know that insects are being hit by cars (see above) and on my front number plate, a couple of weeks ago (beginning of June) I counted 73 insects, mainly aphids after a 245 km trip. The problem as I see it, is quantifying the numbers killed and calculating the effect that this has on insect abundance. I have mentioned the splatometer in an earlier post which attempts to standardise the number plate counts and I am pleased to see that this has now been revived by Bug Life, and will hopefully carry on for many years. The idea behind this is that over the years we will be able to see if insect numbers as reflected by the change in numbers of splats are increasing, decreasing of remaining the same.  This will not, certainly as described, tell us how many insects are being killed by road using vehicles, although it would be possible if the data were collected over delineated stretches of road (Baxter-Gilbert et al., 2015).  It is not just flying insects that are killed by cars; not all flying insects fly across roads, many seem happy to walk to the other side, reckless as that may seem.

A brave, or possibly fool-hardy carabid beetle crossing the road – Guild Lane, Sutton, Staffordshire, 9th June 2021.

There have been enough studies done looking at the interactions between roads and insects for a review article to have been published fairly recently, although not all the papers deal directly with mortality effects (Munõz et al., 2015). Many studies have recorded the species affected and the number of dead individuals found but few have attempted to calculate what this means in total. Most studies, as we might expect, have been on large, easily identifiable charismatic species (Munõz et al., 2015) and it from these that we do have some idea of the magnitude of the mayhem caused by road traffic. Some of the figures are incredibly high. A survey of Odonata road kill, albeit near a wetland, of two 500 m stretches of dual carriageway in the Great Lakes region of the USA revealed that at least 88/km/day were being hit and killed by vehicles (Riffell, 1969).  Another study in the USA, this time on Lepidoptera, calculated that about 20 000 000 butterflies (mainly Pieridae) were killed in one week in September (McKenna et al., 2001). The most dramatic figures however, are those from a study in Canada which estimated that 187 billion pollinators (mainly Hymenoptera) are killed over the summer in North America (Baxter-Gilbert et al., 2015).  An unpublished study by Roger Morris (thank you Richard Wilson @ecology_digest for bringing this to my attention) also highlights the dangerous effects of cars on Hymenoptera). Despite the mounting evidence of the harm that road traffic does to insects there is remarkably little information about how this can be reduced, although I did find a paper that noted that if insects are struck by cars driving at speeds of 30-40 km/h they survive the crash whereas speeds greater than this prove fatal (Rao & Girish, 2007).  It might be possible to impose insect safe speed limits along stretches of road that go through sites of special insect interest (perhaps I should try and coin that acronym, SSII, as an additional/alternative term to SSSI (Sites of Special Scientific Interest), but I am not sure how amenable drivers would be to signs telling them to slow down because of insects😊, considering how few drivers slow down in response to the signs warning them about deer and other vertebrate hazards. Another option would be to design road vehicles so that the air flow across them pushes insects away rather than into them; this may already be fortuitously happening as Manu Saunders points in her interesting post about the ‘windscreen anecdote’.  That said, even if cars are more aerodynamic and less likely to splatter insects, the levels of road kill reported in the papers I have cited earlier, still imply that insects are being killed by traffic in huge numbers.

This one didn’t get stuck on a car, but died just the same – A519 outside Forton, Staffordshire, 15th June 2021

Even if we do accept that deaths down to direct impact with vehicles is lower than in the past, the roads on which we drive our cars are also having a negative effect on insect numbers. Roads, particularly those surfaced with tarmacadam, present an inhospitable surface to some insects which may make them reluctant to fly or walk across. It has been shown that bee and was communities can be different on different sides of a road (Andersson et al., 2017) as the road act as barriers, particularly for smaller species of bees (Fitch & Vaidya, 2021).

Despite the mortality that vehicles impose on insects, roads are not necessarily a totally bad thing for invertebrates; road verges, when sympathetically managed, can provide overwintering sites for a range of arthropod species (Saarinen et al., 2005; Schaffers et al., 2012) and some insect species seem to enjoy feeding on roadside vegetation because of the increased nitrogen content of the plants living alongside traffic (Jones & Leather, 2012).

Overall however, given the very high mortality rates directly associated with cars and other road traffic and the very real indirect effects caused by habitat fragmentation, it would seem that we have much to do to make roads safer for insects and other animals.

References

Andersson, P., Koffman, A., Sjödin, N.E. & Johansson, V. (2017) Roads may act as barriers to flying insects: species composition if bees and wasps differs on two sides of a large highway.  Nature Conservation, 18, 41-59.

Baxter-Gilbert, J.H., Riley, J.L., Neufeld, C.J.H., Litzgus, J.D., & Lesbarreres, D. (2015) Road mortality potentially responsible for billions of pollinating insect deaths annually. Journal of Insect Conservation, 19, 1029-1035.

Fitch, G. & Vaidya, C. (2021) Roads pose a significant barrier to bee movement, mediated by road size, traffic and bee identity. Journal of Applied Ecology, 58,1177–1186.

Glick, P.A. (1939) The Distribution of Insects, Spiders, and Mites in the air.  Technical Bulletin no. 673, USDA. https://naldc.nal.usda.gov/download/CAT86200667/PDF

Grout, A. & Russell, R.C. (2021)H Aircraft disinsection: what is the usefulness as a public health measure? Journal of Travel Medicine, 28, taaa124.

House, A.P.N., Ring, J.G., Hill, M.J. & Shaw, P.P. (2020) Insects and aviation safety: The case of the keyhole wasp Pachodynerus nasidens (Hymenoptera: Vespidae) in Australia. Transportation Research Interdisciplinary Perspectives, 4, 100096.

Jones, E.L. & Leather, S.R. (2012) Invertebrates in urban areas: a review. European Journal of Entomology, 109, 463-478.

McKenna, D.D., McKenna, K., Malcolm, S.B. & Berenbaum, M.R. (2001) Mortality of lepidoptera along roadways in Central Illinois. Journal of the Lepidopterist’s Society, 55, 63-68.

Melis, C., Olsen, C.B., Hyllvang, M., Gobbi, M., Stokke, B.G., & Røskaft, E. (2010) The effect of traffic intensity on ground beetle (Coleoptera: Carabidae) assemblages in central Sweden. Journal of Insect Conservation, 14, 159-168.

Munõz, P.T., Torres, F.P. & Megias, A.G. (2015) Effect of roads on insects: a review. Biodiversity & Conservation, 24, 659-682.

Pop, D.R., Maier, A.R.M., Cadar, A.M., Cicort-Lucaciu, A.S., Ferenți, S. & Cupșa, D. (2020) Slower than the trains! Railway mortality impacts especially snails on a railway in the Apuseni Mountains, Romania. Annales Zoologici Fennici, 57, 225-235.

Rao, R.S.P & Girish, M.K.S. (2007) Road kills: assessing insect casualties using flagship taxon. Current Science, 92, 830-837.

Reynolds, D.R., Chapman, J.W., Edwards, A.S., Smith, A.D., Wood, C. R., Barlow, J. F. and Woiwod, I.P. (2005) Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations. Bulletin of Entomological Research, 95, 259-274.

Riffell, S.K. (1999) Road mortality of dragonflies (Odonata) in a Great Lakes coastal wetland. Great Lakes Entomologist, 32, 63-74.

Saarinen, K., Valtonen, A., Jantunen, J. & Saarnio, J. (2005) Butterflies and diurnal moths along road verges: does road type affect diversity and abundance? Biological Conservation, 123, 403-412.

Schaffers, A.P., Raemakers, I.P., & Sýkora, K.V. (2012) Successful overwintering of arthropods in roadside verges. Journal of Insect Conservation, 16, 511-522.

2 Comments

Filed under EntoNotes, Roundabouts and more

Insectageddon, Ecological Armageddon, Global insect Apocalypse – why we need sustained long-term funding

“To him that countryside, largely unspoiled in his early days, was an inexhaustible source of delight and a subject of endless study and mediation…And as the years passed and the countryside faded away under the withering touch of mechanical transport, that knowledge grew more and more precious. Now, the dwindling remnants had to be sought and found with considered judgement and their scanty material eked out with detail from the stores of the remembered past”  R Austin Freeman The Jacob Street Mystery (1942)

The recent release of the IPBES report highlighting the significant global declines in biodiversity has prompted me to revisit the “Insectageddon” debate, some of the ramifications of which I wrote about earlier this year.

 

Summary from the IPBES report – note that even a well-known group like dragonflies is quite data deficient*.

Insects may be in decline, but papers about their decline have been around for almost twenty years and even more are appearing as we entomologists begin to hope that people may at last be beginning to listen to us.

A selection of some of the many papers that have documented insect declines over the last several years.

Using the now infamous search term “insect decline” in the Google Trends function I was not surprised to see the steep increase since 2016, as 2017 was the year in which the paper reporting  the 75% decline in flying insect biomass appeared (Hallmann et al., 2017), but I was intrigued by what appeared to have been a peak in mentions since 2004.

Google Trends using the phrase insect decline – last data point is 2019 at the time of writing

I wondered what caused the peak in 2004, so using the same key words as Sánchez-Bayo & Wyckhuys (2019), checked Google Scholar and Web of Science to see if I could track down a paper that might have caused a media splash at the time.  I also checked 2003, in case there was a delay in reporting. To my surprise I couldn’t find anything relevant in 2004, but 2003 threw up three papers (Hopkins & Freckleton, 2002; Kotze & O’Hara, 2003; Dennis & Shreeve, 2003).  The first was about the decline of taxonomists, which although a serious problem is unlikely to have generated that much attention, the other two were about long-term declines in Carabid beetles (Kotze & O’Hara, 2003) and the third about the decline of French butterflies (Dennis & Shreeve, 2003) which again, I suspect were probably not high enough profile to generate a big splash.  I was puzzled but then I thought, why not just put it into Google with the date 2004, and sure enough it directed me to a Nature News item with the headline Insect deaths add to extinction fears, which in turn led me to Thomas et al., (2004) which I am pretty certain generated the peak in interest and also highlights the fact that ecologists and entomologists have been worrying about this problem for some time.

Since the appearance of the, now, infamous paper, that sparked the most recent round of Armageddon stories (Sánchez-Bayo & Wyckhuys, 2019), a lot has been, quite justifiably, written about the short-comings of the study both in scientific journals (e.g. Komonen et al., 2019, Simmons et al., 2019; Thomas et al, 2019, Wagner, 2019) and in blog posts, such as this thoughtful piece from Manu Saunders.

What does need to be stressed, is that although these commentators recognise the shortcomings of the paper, none of them, including the most scathing of commentators (Mupepele et al., 2019) dispute the fact, that insects, in general, are in decline. Unfortunately, the climate change deniers and their ilk, have, of course, used the criticisms to try and spread a message of “nothing to fear folks”.

Hopefully a failed attempt at downplaying the insect decline stories, but a great example of how climate change deniers are keen to muddy the waters

For humans with our relatively short lifespans, shifting baselines can be a problem (Leather & Quicke, 2010; Tree, 2018), in that people accept what they have known in their childhoods as the natural state of nature.  It can of course work the other way. I can remember the late great Miriam Rothschild telling me in the early 1990s, how as a “gel” in the 1920s a particular butterfly species that was currently at very low numbers compared with the 1970s which was what I and similar aged colleagues were remarking upon, was 50 years before that, also very low, her message being “populations cycle”.  It is because of this propensity, which is nicely illustrated by some of my 20-year data sets, all from the same 52 trees, that we need access to long-term funding to monitor insect populations.  Chop my data sets into three-year concurrent periods, the time-span of a typical PhD study or research grant, and you end up with some very different pictures of the populations of three common insect species.

The Silwood Park Winter moth, Operophtera brumata – dramatic shifts in population levels

Twenty years of the Sycamore aphid, Drepanosiphum platanoidis, at Silwood Park.  First five years versus last five years – what happened? Does this fit with the recent paper by Stephen Heard and colleagues that species chosen for study because they are common or easy to find, are almost certainly to show declines over the long-term?

 

The Maple aphid, Periphyllus testudinaceus – twenty-year data run from Silwood Park

Given the above, and the fact that most of the evidence for insect declines is largely based on studies from Europe, the UK heading the list (Wagner, 2019) and on top of that, the evidence from tropical locations is open to different interpretations (e.g.  Willig et al, 2019), there is an urgent need for something to be done.  So, what do we need to do?  I think there are three things that need addressing, sooner, rather than later.

Monitoring

First, we need to build on the work that has been done in Germany (Hallmann et al., 2017) and the UK via the Rothamsted Insect Survey (Bell et al., 2015) and establish active insect monitoring networks using repeatable sampling methods, but on a global scale. New monitoring programs will not help establish past baselines, but they can help us determine trends from this point forward. We can make this truly global by engaging the public through community science. These programs will need to use standardized methods, such as Malaise traps, pitfall traps, light traps, and effort-based counts, with species diversity, abundance and biomass being primary measures. Although biomass is an imperfect estimator because it can be sensitive to changes in abundances of large species, it is still a valuable metric from the ecosystem perspective. Determining biomass trends also does not require fine-scale taxonomic knowledge, which is often lacking in citizen science initiatives. It would, even if it were possible, be incredibly expensive, to try to monitor all insect species from any community with appreciable diversity.  A much better option, and one that will certainly appeal to a wide range of citizen scientists would be to monitor taxa like butterflies, macro-moths, dragonflies, bees, and some beetle groups.  All these can serve as indicator species for other insect groups and, tongue in cheek, many can be observed using binoculars, thus encouraging ornithologists and mammalologists to join in 😊

Innovative use of past data

At national levels, a few long-term monitoring schemes already exist, for example, the UK Environmental Change Network (http://www.ecn.ac.uk/ ) collects biotic and abiotic data, including many insect groups, from 57 different sites across the UK using identical protocols (Rennie, 2016).   Multiple Long-Term Ecological Research projects track different facets of ecosystems in different ways (Magurran et al., 2010). In fact, the LTER network, if expanded to a global scale, could be the natural framework to make a global network proposal feasible, possibly through a targeted step change in funding (Thomas et al., 2019).  This is great for the future, but unfortunately, all the active long-term monitoring schemes are younger than modern agricultural intensification.  A way forward would be to use museum collections and to construct data sets by going through back numbers of those entomological journals that pre-date the 1940s.  There are some long-term historical long-term data that are already accessible, for example the 150 year record pine beauty moth infestations in Germany dating from 1810 (Klimetzek, 1972) and I am sure that others must exist.

Funding

Whatever we do, it will need long-term funding. There needs to be a recognition by state research funding agencies that entomological survey and monitoring work, although appearing mundane, should receive a step-change in funding, even if it is at the expense of other taxa  Funding should reflect the diversity and abundance of taxa, not their perceived charisma (Clark & May, 2002; Leather, 2013).  Crowd-funding may draw in some funding, but what is required is stable, substantial and sustained funding that will allow existing and future international collaborations to flourish.  For this to happen and failing sustained state funding, we need to convince philanthropic donors such as the Gates Foundation to turn their attention from insect eradication to insect conservation.

We do, however, need to act quickly, stop talking to just our peers, meet the public, and, if needs be, personally, or via our learned societies, lobby governments; there is no Planet B.

 

References

Bell, J.R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., Shortal, C.R., Taylor, M.S., Verier, P., & Harrington, R. (2015) Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. Journal of Animal Ecology, 84, 21-34.

Cordoso, P. & Leather, S.R. (2019) Predicting a global insect apocalypseInsect Conservation & Diversity, 12, 263-267.

Dennis, R.H.L. & Shreeve, T.G. (2003) Gains and losses of French butterflies: tests of predictions, under-recording and regional extinction from data in a new atlas. Biological Conservation, 110, 131-139.

Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hoflan, N., Schwan, H., Stenmans, W., Muller, A., Sumser, H., Horren, T., Goulson, D., & De Kroon, H. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoSONE, 12(10), :e0185809.

Hopkins, G.W. & Freckleton, R.P. (2002) Declines in the numbers of amateur and professional taxonomists: implications for conservation. Animal Conservation, 5, 245-249.

Klimetzek, D. (1972) Die Zeitfolge von Ubervermehrungen nadelfressender kiefernraupen in derPfalz seit 1810 und die Ursachen ihres Ruckanges in neuerer Zeit. Zeitschrift fur Angewandte Entomologie, 71, 414-428.

Kotze, D.J. & O’Hara, R.B. (2003) Species decline – but why?  Explanations of Carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia, 135, 138-148.

Leather, S.R. & Quicke, D.J.L. (2010) Do shifting baselines in natural history knowledge threaten the environment?  Environmentalist, 30, 1-2

Magurran, A.E., Baillie, S.R., Buckland, S.T., Dick, J.M., Elston, D.A., Scott, M., Smith, R.I., Somerfiled, P.J. & Watt, A.D. (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology and Evolution, 25, 574-582.

Møller, A.P. (2019) Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecology & Evolution, 9, 6581-6587.

Mupepele, A.C., Bruelheide, H., Dauber, J., Krüß, A., Potthast, T., Wägele, W. & Klein, A.M. (2019). Insect decline and its drivers: Unsupported conclusions in a poorly performed meta-analysis on trends—A critique of Sánchez-Bayo and Wyckhuys (2019).  Basic & Applied Ecology, 37, 20-23.

Rennie, S.C. (2016) Providing information on environmental change: Data management, discovery and access in the UK Environmental Change Network data.  Ecological Indicators, 68, 13-20.

Sánchez-Bayo, F. & Wyckhuys, K.A.G. (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8-27.

Thomas, C.D., Jones, T.H. & Hartley, S.E. (2019) “Insectageddon”: a call for more robust data and rigorous analyses. Global Change Biology, 6, 1891-1892.

Thomas, J.A., Telfer, M.G., Roy, D.B., Preston, C.D., Greenwood, J.J.D., Asher, J., Fox, R., Clarke, R.T. & Lawton, J.H. (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 303, 1879-1881.

Tree, I. (2018) Wilding, Picador, Pan Macmillan.

Wagner, D.L. (2019) Global insect decline: comments on Sánchez-Bayo and Wyckhuys (2019). Biological Conservation, 233, 332-333.

Willig, M.R., Woolbright, L., Presley, S.J., Schowalter, T.D., Waide, R.B., Heartsill Scalley, T., Zimmerman, J.K.,  González, G. & Lugo, A.E. (2019) Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. Proceedings of the National Academy of Sciences, 116, 12143-12144.

*

8 Comments

Filed under Bugbears, EntoNotes

Pick and Mix 30 – to amuse and inform

Picture from Erica McAlister’s (@FlygirlNHM) Twitter stream –  Picture held in the NTNU University Museum, Norway

 

Eradicating invasive vertebrate predators could help save rare insects

Are you bringing something nasty back with you from your exotic holiday?

We really must stop using plastic so much – it gets everywhere

Insects as a protein source

Many people’s first memories of the countryside come from visiting a National Park.

Great article by Christie Bahlai and colleagues – Open Science Isn’t Always Open to All Scientists – You can follow Christie on Twitter @cbahlai

Finding and climbing the tallest tree in the World!

A lament for declining wild bee populations

Interview with Anne Sverdrup-Thygeson about her new book Terra Insecta and the title change forced on her by her Amercian publishers

Bees seeking blood, sweat and tears is more common than you think Manu Saunders (@ManuSaunders) and Toby Smith cast a critical eye on the recent story of the eye-dwelling bees

 

1 Comment

Filed under Pick and mix

Pick and mix 13 – Ten more links to things I found of interest

A mixed bag

 

Asian hornets in Spain via Ray Cannon

Unusual dragonfly behaviour via the Bug Blog

Practice what you preach – ecologists shouldn’t fly, I certainly don’t 🙂

Charley Krebs asks how randomly do ecologists sample and does it really matter?

Steffan Lindgren reviews Alexander von Humboldt

This is the link to the paper reporting the huge decline in insect abundance that made all the headlines the other week.  Scary stuff.

This is a link to Manu Saunders’ excellent blog post putting those same headlines in perspective

A great post about why anyone from any background should be able to study and work in science

A poem about how some flowers help bees find them using nanoscale ridges

Using natural history collections as primary data for ecological research

Leave a comment

Filed under Pick and mix

Entomyopia and Entoalexia – two potentially life-threatening conditions

This post was stimulated by two recent events.  First, a conversation I had at a curry evening organised by the amateur band that my wife plays in.  My neighbour was a well-educated modern languages teacher in her early forties.  We discussed our various jobs and she evinced surprise that anyone would want to work with insects and even when I explained the myriad benefits of understanding insect biology and ecology to her in terms of food security, vector control, detritivores, integrated pest management, pollination etc., she was still unconcerned about the lack of training provision for entomology and the dwindling number of young entomologists in the population.  I also highlighted the growing disconnect between people and nature.  Her response was that it was just the way it was and that people had other interests now!  I was, despite the fact that I have bemoaned the lack of funding for invertebrate research and training for some time now, totally amazed and down-hearted.  The second event was when one of my entomological colleagues reported to me how shocked he had been, when describing the recent opening of our new entomology building at Harper Adams University to his next door neighbour, a retired engineer, that the neighbour expressed great surprise that anyone would want such a facility and why anyone would want to spend that amount of money to enable entomological research.

I have written before about my worries about the decline of interest in natural history and entomology (Leather & Quicke, 2009, 2010) but I feel that it is now well past time to do something urgently about this lack of understanding among the public, the educational establishment, funding councils and the government.  Not only is institutional invertebratism  (Leather, 2009, 2013) still alive and well but we now have two potentially life-threatening conditions that desperately need curing.

Entomyopia

noun

entomological short-sightedness

        • a condition in which insects are viewed either as pollinators or as nuisances
        • a lack of foresight or discernment as to the importance of entomology:  a narrow view of entomology

Entoalexia

noun

entomological blindness

        • a condition in which a person or organisation, is totally oblivious to the importance of entomology and insects

Insects - what insects

Symptoms

The closing of entomology departments and research groups

A reduction in the numbers of entomologists employed by universities and research institutions

An ageing population of practicing entomologists, many characterised by grey beards and spectacles

Lack of understanding by the general public about why the study of entomology is important to their well-being

A lack of teaching of invertebrate biology at secondary schools and at undergraduate level

A lack of government funding

A tendency for members of the general public to scream and/or flinch when insects enter their personal space

A tendency for members of the general public to kill insects when found in their personal space

A failure by the majority of the population to appreciate the beauty and wonder of insects

Investing hundreds of millions into medical research to keep people alive for longer (a good thing) without thinking about how the extra mouths are going to be fed without similar levels of investment in crop protection research (a very bad thing)

Funding in conservation and whole organism biology and ecology heavily biased towards “large charismatic mega-fauna”

Schoolchildren able to name the ten most endangered mammal species in the world but unable to recognize and name the ten most common insect species in their own country

 

Treatment

A concerted effort by all entomologists to explain to the general public, the educational establishment, funding bodies, the media and  government why we need urgently more entomologists and why the study of entomology is crucially important to our well-being.  I would go further than that and suggest that we need to redouble our outreach activities and to actively lobby those who hold the purse strings and those that represent us in government.  Yes, national entomological societies such as the Royal Entomological Society in the UK are doing much more to promote entomology than they used to but much more remains to be done.  The Amateur Entomologist’s Society  has, I have been reminded, also been active in this area for more than eighty years.  My message to all entomologists is act now before it is too late.

 

Prognosis

At the current level of investment  into treatment and cures, very gloomy.

 

Post script

As I was preparing this article Brigit Strawbridge published an impassioned plea to all of us to take more notice of the little things that run the world

http://www.beestrawbridge.blogspot.co.uk/2014/08/mass-insect-extinction-elephant-in-room.html
Post post script

I would be remiss if I did not point out that mycology, plant pathology and plant nematology are also extremely vulnerable and just as important to our well-being as entomology.

 

Post post post script

Entomyopia  is apparently not a new disease, shortly after posting this I came across this gem from 1882.

“No science is so generally slighted, ignored, and misunderstood as is Entomology.  Hysterical humanitarians, novelists, poets, political agitators, classical students, speak in terms of contempt or horror of the “fly-hunters””

Anonymous (1882) The Journal of Science, and Annals of Astronomy, Biology, geology, Industrial Architecture, Manufactures and Technology, 4, 208

 

References

Leather, S. R. (2009). Institutional vertebratism threatens UK food security. Trends in Ecology & Evolution 24: 413-414.

Leather, S. R. (2013). Institutional vertebratism hampers insect conservation generally; not just saproxylic beetle conservation. Animal Conservation 16: 379-380.

Leather, S. R. & Quicke, D. L. J. (2009). Where would Darwin have been without taxonomy? Journal of Biological Education 43: 51-52.

Leather, S. R. & Quicke, D. L. J. (2010). Do shifting baselines in natural history knowledge threaten the environment? Environmentalist 30: 1-2.

 

27 Comments

Filed under Bugbears, EntoNotes, Uncategorized