Tag Archives: island biogeography

Ten more papers that shook my world – complex plant architecture provides more niches for insects – Lawton & Schroeder (1977)

Some years ago I wrote about how one of my ecological heroes, Sir Richard Southwood (later Lord Southwood), influenced my research and stimulated what has become a lifelong interest of mine, island biogeography, in particular the iconic species-area relationship. Apropos of this it seems apposite to write about another huge influence on my research, Sir John Lawton.  I first encountered John*, as he was then, at the tender age of 17, when our Sixth Form Science class were bussed from Ripon Grammar School to York University to hear a very enthusiastic arm-waving young ecologist, yes John Lawton, talking about food webs. Excellent as it was, it wasn’t, however, this talk that inspired me :-), but a paper that he and Dieter Schroeder wrote a few years later (Lawton & Schroeder, 1977), in which they showed that structurally more diverse plants potentially hosted more insect species per unit range than those plants with less complex architecture.  A couple of years later Strong & Levin (1979) showed that this also applied to fungal parasites in the USA.  The mechanism behind the finding was hypothesised to be based on apparency – the bigger you are the easier you are to find, the bigger you are, the more niches you can provide to be colonised, pretty much the same reasoning used to explain geographic island biogeography and species-area accumulation curves (Simberloff & Wilson, 1969). John Lawton, Don Strong and Sir Richard Southwood also highlighted this in their wonderful little book (Strong et al, 1984) which has provided excellent material for my lectures over the years.

As someone who is writing a book, theirs is an excellent example of how you can improve on other people’s offerings.  Staying with the theme of plant architectural complexity, Strong et al (1984) brilliantly reported on Vic Moran’s masterly study on the relationship between Opuntia growth forms and the number of insects associated with them (Moran, 1980).  Vic’s study was an advance on the previous studies because he examined one family of plants, rather than across families, so reducing the variance seen in other studies caused by phylogenetic effects. I should also point out that this paper was also an inspiration to me.

The figure as shown in Victor Moran’s paper.

The revamped Moran as shown in Strong & Lawton (1984).

Okay, so how did this shake my world? As I have mentioned before, my PhD and first two post-docs were on the bird cherry-oat aphid, Rhopalosiphum padi, a host-alternating aphid that uses bird cherry, Prunus padus, as its primary host.  Never being one to stick to one thing, I inevitably got interested in bird cherry in general and as well as eventually writing a paper about it (Leather, 1996) (my only publication in Journal of Ecology), I also, in due course, set up a long term experiment on it, the outcome of which I have written about previously. But, I digress, the first world shaking outcome of reading Lawton & Schroeder, was published in Ecological Entomology (incidentally edited by John Lawton at the time), in which I analysed the relationships between the insects associated with UK Prunus species and their distribution and evolutionary history, and showed that bird cherry had a depauperate insect fauna compared with other Prunus species (Leather, 1985).

I’m not working with very many points, but you get the picture (from Leather, 1985). Bird cherry (and also Gean, the common wild cherry. Prunus avium) hosts fewer insect species than would be expected from its range and history.

This in turn led me on to an even more ambitious project.  Inspired by a comment in Kennedy & Southwood (1984) that a better resolution of the species-plant range relationship would result if the analysis was done on a taxonomically restricted group of plants and by the comment in Southwood (1961) that the Rosaceae were a very special plant family, I spent several months wading through insect host lists to compile a data set of the insects associated with all the British Rosaceae.  Once analysed I submitted the results as two linked papers to the Journal of Animal Ecology.  Having responded to Southwood’s demand that “this manuscript be flensed of its too corpulent flesh” it was eventually published (Leather, 1996).  My somewhat pompous introduction to the paper is shown below.

“This relationship is modified by the structure or complexity of the plant, i.e. trees support more insect species than shrubs, which in turn support more species than herbs (Lawton & Schroder 1977; Strong & Levin 1979; Lawton 1983).”

“Kennedy & Southwood (1984) postulated that if taxonomically restricted groups of insects and/or plants were considered, the importance of many of these variables would increase. Few families of plants cover a sufficiently wide range of different growth forms ranging from small herbs to trees in large enough numbers to give statistically meaningful results. The Rosaceae are a notable exception and Southwood (1961) commented on the extraordinary number of insects associated with Rosaceous trees. It would thus appear that the Rosaceae and their associated insect fauna provide an unparalleled opportunity to test many of the current hypotheses put forward in recent years concerning insect host-plant relationships.”

Cutting the long story short (I am much better at flensing nowadays), I found  that Rosaceous trees had longer species lists than Rosaceous shrubs, which in turn had longer lists than herbaceous Rosaceae.

Rather messy, but does show that the more architecturally complex the plant, the more insect species it can potentially host (from Leather, 1986).

Flushed by the success of my Prunus based paper, I started to collect data on Finnish Macrolepidoptera feeding on Prunus to compare and contrast with my UK data (I can’t actually remember why this seemed a good idea).  Even if I say so myself, the results were intriguing (to me at any rate, the fact that only 19 people have cited it, would seem to suggest that others found it less so), in that host plant utilisation by the same species of Macrolepidoptera was different between island Britain and continental Finland (Leather, 1991).



From Leather (1991) Classic species-area graph from both countries but some intriguing differences in feeding specialisation.

Despite the less than impressive citation index for the UK-Finland comparison paper (Leather, 1991), I would like to extend the analysis to the whole of Europe, or at least to those countries that have comprehensive published distributions of their Flora.  I offer this as a project to our Entomology MSc students, every year, but so far, no luck ☹

Although only four of my papers can be directly attributed to the Lawton & Schroeder paper, and taking into account that the insect species richness of Rosacea paper, is number 13 in my all-time citation list, I feel justified in counting it as one of the papers that shook my World.


Kennedy, C.E.J. & Southwood, T.R.E. (1984) The number of species of insects associated with British trees: a re-analysis. Journal of Animal Ecology, 53, 455-478.

Lawton, J.H. & Schroder, D. (1977) Effects of plant type, size of geographical range and taxonomic isolation on numbers of insect species associated with British plants. Nature, 265, 137-140.

Leather, S.R. (1985) Does the bird cherry have its ‘fair share’ of insect pests ? An appraisal of the species-area relationships of the phytophagous insects associated with British Prunus species. Ecological Entomology, 10, 43-56.

Leather, S.R. (1986) Insect species richness of the British Rosaceae: the importance of host range, plant architecture, age of establishment, taxonomic isolation and species-area relationships. Journal of Animal Ecology, 55, 841-860.

Leather, S.R. (1991) Feeding specialisation and host distribution of British and Finnish Prunus feeding macrolepidoptera. Oikos, 60, 40-48.

Leather, S.R. (1996) Biological flora of the British Isles Prunus padus L. Journal of Ecology, 84, 125-132.

Moran, V.C. (1980) Interactions between phytophagous insects and their Opuntia hosts. Ecological Entomology, 5, 153-164.

Simberloff, D. & Wilson, E.O. (1969) Experimental zoogeography of islands: the colonization of empty islands. Ecology50, 278-296.

Southwood, T.R.E. (1961) The number of species of insect associated with various trees. Journal of Animal Ecology, 30, 1-8.

Strong, D.R. & Levin, D.A. (1979) Species richness of plant parasites and growth form of their hosts. American Naturalist, 114, 1-22.

Strong, D.R., Lawton, J.H. & Southwood, T.R.E. (1984) Insects on Plants – Community Patterns and Mechanisms. Blackwell Scientific Publication, Oxford.



Leave a comment

Filed under Ten Papers That Shook My World

Ten papers that shook my world – watching empty islands fill up – Simberloff & Wilson (1969)

Sadly this is the tenth and last in my series of the ten papers that had a great influence on my life as an ecologist.  I’m going to cheat somewhat and actually discuss three papers. In my defence they are extremely closely linked and I am pretty certain that in today’s publishing world they would all have had to have been combined anyway.  That aside, I really liked this experiment the first time I read about it and still rate it very highly.  I would, however, love to be able to travel back in time and give them a couple of hints with the benefit of hind-sight, although as the authors are two of the greatest living ecologists, Dan Simberloff and E O Wilson, I might be a bit apprehensive doing so 🙂 In any case, much of what I would have said was addressed a few years later (Simberloff, 1976).

Wilson and Simberloff wanted to practically test the island biogeography theory famously described by McArthur and Wilson a few year earlier (MacArthur & Wilson, 1967).  To do this they travelled to the Florida Keys and after due reconnaissance decided that the many mangrove “tree islands” would be ideal study sites (Figure 1).  Then came the really cool bit.


Figure 1.  Two of the experimental ‘islands’ from Wilson & Simberloff (1969)

They set about removing the arthropod animal life from nine of the islands (Figure 2), or as much as they could, by fogging with methyl bromide; not something we could do now.  They then monitored the islands at frequent intervals for the next year.  They had of course surveyed the islands before they fumigated them.


Figure 2.  What a cool project; defaunation in progress – from Wilson & Simberloff (1969)


Figure 3. Island equilibria – from Simberloff & Wilson (1970)

The major finding from their study was that recolonization happened quite quickly and that a year later had pretty much reached an equilibrium position (Figure 3).  Another important finding and one that has important implications for restoration and conservation strategies was that two years after the defaunation event, although the islands were well populated, the species composition, except for one island was less than 40% similar to the original inhabitants (Simberloff & Wilson (1970).  Most species present were new to those islands.  The analysis of the data presented in the two data papers is rather basic, some of the key island biogeographical premises are not addressed at all and I wondered why they had not done so.  Their data are all shown in some detail so it is possible to do some more analysis, which I took the liberty of doing.  The extra analysis shows why they did not discuss area effects per se .  The only significant relationship that I could find was that between the number of species and the distance from the ‘mainland’ source (Figure 4), which as predicted by MacArthur & Wilson (1967) was negative. Sadly, island size did not correlate with species number (Figure5).   Finally, there was a positive, but not significant relationship between the initial number of species found on an island and the number a year later (Figure 6).


Figure 4.  Relationship between distance from ‘mainland’ source and the number of arthropod species present (R2 = 0.65, P <.0.05) Data from Simberloff & Wilson (1970).


Figure 5.  Island diameter and number of arthropod species (not statistically significant, r2 = 0.19, although I am sure many politicians would view this as a positive trend). Data from Simberloff & Wilson (1970)


Figure 6.  Initial number of species on an island and number of species present one year later. Although it looks convincing (r2 = 0.54), there are too few observations to reach statistical significance.  Data from Simberloff & Wilson (1970)

Although this work was extremely influential, (my Bracknell roundabouts study owes a lot to it), there were two major flaws in the original experimental design.  Firstly the number of islands was very low, but of course this is understandable, given the effort and complex logistics required to remove the arthropods safely (Figure 2).  The other flaw was that the islands did not cover a large enough range of sizes, thus making it less likely for the species-area pattern to be detected which was a great shame.

As I mentioned earlier, these short-comings were not ignored by the authors, and a few years later Sinberloff (1976) reported the results of an enhanced study, again in the Florida Keys, where he was able to convincingly demonstrate the species-area effect.   I guess that this was pretty satisfying as it tied up a number of loose strings.  He also managed to get the phrase “flogging a dead horse” into his introduction 🙂

Of the three papers, Simberloff & Wilson (1969) is the most highly cited (according to Google Scholar, 618 to date) and became a “citation classic”* in 1984 at which time it had accumulated 164 citations.  Simberloff & Wilson (1970) has attracted 252 cites with Wilson & Simberloff (1969) trailing in third with a mere 158 cites.  As a point of interest, Simberloff (1976) has so far received 313 cites.  To reiterate, the original mangrove island study, despite its flaws was a fantastic piece of work and Sinberloff and Wilson won the Mercer Award of the Ecological Society of America for this work in 1971.

I can think of no better person to explain why Simberloff & Wilson (1969) deserves its place in the Ecological Hall of Fame than Simberloff himself who in the commentary to the 1984 citation classic article wrote “I think the main reason it is cited, however, and its lasting contribution, is not so much that it supports the [equilibrium] theory, as that it reported a field experiment on ecological communities, and thus seemed dramatically different from the correlative approach that dominated this field



MacArthur, R.H. & Wilson, E.O. (1967) The Theory of Island Biogeography Princeton University Press, Princeton.

Simberloff, D. (1976)  Experimental zoogeography of islands: effects of island size.  Ecology, 57, 629-648.

Simberloff, D. & Wilson, E.O. (1969) Experimental zoogeography of islands: the colonization of empty islands. Ecology, 50, 278-296.

Simberloff, D. & Wilson, E.O. (1970) Experimental zoogeography of islands: a two-year record of colonization. Ecology, 51, 934-937.

Wilson, E.O. & Simberloff, D. (1969) Experimental zoogeography of islands: defaunation and monitoring techniques. Ecology, 51, 267-278.



Filed under Ten Papers That Shook My World