Tag Archives: species-area relationships

Ideas for doing ecology during the lockdown

If you are a follower of my blog then you will know that I have a thing about roundabouts; if not then follow this link and read about the wonderful world of the famous Bracknell roundabouts 🙂 Seriously though, I, or more correctly, a bunch of my students with the occasional visit from me, spent twelve years sampling roundabouts for a variety of plant and animal life, ranging from bugs through to birds with beetles in between.

I originally set the project up as a pedagogical exercise to make island biogeography and nature reserve design more relevant to UK-based undergraduates. I have a bit of a thing about students swanning off to warm tropical places to do conservation, when we have plenty of our own nature that needs attention much closer to home.

Having come up with the idea of getting students (initially undergraduates, but soon involving a horde of MSc students and even a PhD student) to test the species-area relationship using roundabouts as islands – green oases surrounded by a sea of tarmac,  I had to do something about it, especially as the Borough Council, to my total amazement, agreed that I could do it 🙂

So the project was born and lived on for twelve very productive and enjoyable years. We used pitfall trapping, sweep netting, tree beating, suction sampling, transect sampling for the butterflies and bumblebees and also bird counts.  We sampled the vegetation, measured NOx and recorded how often the grass was mown.  We also measured how far away the nearest green spaces were and the immediate and not so immediate land-use.

To my initial surprise (although perhaps I shouldn’t have been), it turned out that the roundabouts were full of wildlife and behaved like geographical islands, big ones having more species than smaller ones (species-area) and more individuals of those species (area-abundance theory).  We also showed that native plants supported more insects than non-native plants and that this was good for the birds.

Quite a bit of the work is now published although we still have a pile of plant and woodlouse data to write up.

So, how does this relate to our current lockdown status?  You can’t very well go out and sample roundabouts or roadside verges, the police will move you along pretty quickly.  Most of you however, probably have a garden and know people with gardens.  Why not get together (virtually of course) and decide what you want to sample; pitfall traps are probably the easiest thing to start with or you could do a bit of bush and tree beating.  Measure your respective islands (gardens) and start collecting and counting. Then collate your data and see what you turn up. Kevin Gaston and Ken Thompson both formerly at Sheffield University found all sorts of exciting things in Sheffield domestic gardens and if you want a good read about the wildlife of suburban gardens I can recommend Jennifer Owens’ little book https://www.amazon.co.uk/Ecology-Garden-First-Fifteen-Years/dp/0521018412

So, find a trowel and get those plastic/paper party cups, jam jars, or tin cans deployed, or get a broom handle and bed sheet and start being cruel to the trees and bushes and enjoy a bit of outdoor time 🙂




Leave a comment

Filed under Roundabouts and more

Satiable curiosity – side projects are they worthwhile?

I’ve been meaning to write this one for quite a while.  It was stimulated by two posts, one from the incredibly prolific Steve Heard, the other by the not quite so prolific, but equally interesting,  Manu Saunders.  First off, what is a side project?  To me, a side project is one that is not directly funded by a research council or other funding agency or, in some cases, one that you do in your spare time, or to the horror of some line-managers, is not strictly in your job description 🙂 The tyranny of modern research funding dictates that projects must have specific research questions and be accompanied by hypotheses and very specific predictions; most proposals I referee, even contain graphs with predicted results and almost all have ‘preliminary data’ to support their applications.   This is not necessarily a bad thing but to directly quote Manu Saunders from her blog post

“Whittaker’s (1952) study of ‘summer foliage insect communities in the Great Smoky Mountains’ is considered one of the pioneer studies of modern community ecology methods. The very short Introduction starts with the sentence “The study was designed to sample foliage insects in a series of natural communities and to obtain results of ecological significance from the samples.” No “specific research questions” and the hypotheses and predictions don’t appear until the Discussion” Sounds like bliss.

The central ethos of my research career which began in 1977, can be summed up by this quotation uttered by the character ‘Doc’ in John Steinbeck’s novel Sweet Thursday “I want take everything I’ve seen and thought and learned and reduce them and relate them and refine them until I have something of meaning, something of use” (Steinbeck, 1954).* The other thing that has driven me for as long as I can remember, and why I ended up where I am,  is something I share with Rudyard Kipling’s Elephant Child, and that is a “satiable curiosity”:-) Something that has always frustrated me, is that, in the UK at least, most funded research tends to be of a very short duration, usually three years, often less than that**, and if you are very lucky, maybe five years.  If you work on real life field populations, even if you work on aphids, these short term projects are not really very useful; laboratory work is of course a different matter.

I got my first ‘permanent’ job in 1982 working for UK Forestry Commission Research based at their Northern Research Station (NRS) just outside Edinburgh.  My remit initially was to work on the pine beauty moth, Panolis flammea and finally, on the large pine weevil, Hylobius abietis.  As a committed aphidophile, I was determined, job description or not, to carry on working with aphids. I decided that the easiest and most useful thing to do was to set up a long-term field study and follow aphid populations throughout the year.  My PhD was on the bird cherry-oat aphid, Rhopalosiphum padi, a host alternating aphid, the primary host of which is the bird cherry, Prunus padus, with which  Scotland is very well supplied, and fortuitously, just down the road from NRS was Roslin Glen Nature Reserve with a nice healthy population of bird  cherry trees.  I chose ten suitable trees and started what was to become a ten-year once a week, lunch time counting and recording marathon.  I also decided to repeat a study that my PhD supervisor, Tony Dixon had done, record the populations of the sycamore aphid, Drepanosiphum platanoidis.  In the grounds of NRS were five adjacent sycamore tree, Acer pseudoplatanus, and these became my early morning study subjects, also once a week. I had no articulated hypotheses, my only aim was to count and record numbers and life stages and anything else I might see. Anathema to research councils but exactly what Darwin did 🙂

Although it was a ‘permanent’ job, after ten years I moved to Imperial College at Silwood Park and immediately set up a new, improved version of my sycamore study, this time a once weekly early morning*** walk of 52 trees in three transects and with much more data collection involved, not just the aphids, their natural enemies and anything else I found and on top of all that, the trees themselves came in for scrutiny, phenology, growth, flowering and fruiting, all went into my data sheets.  I also set up a bird cherry plot, this time with some hypotheses articulated 🙂

As a result of my weekly walk along my sycamore transects, a few years later I set up yet another side project, this time an experimental cum observational study looking at tree seedling survival and colonisation underneath different tree canopies. At about the same time, initially designed as a pedagogical exercise, I started my study of the biodiversity of Bracknell roundabouts.

One might argue that most undergraduate and MSc research projects could also come under the heading of side projects, but I think that unless they were part of a long term study they aren’t quite the same thing, even though some of them were published.  So, the burning question, apart from the benefits of regular exercise, was the investment of my time and that of my student helpers and co-researchers worth it scientifically?

Side project 1.  Sycamore aphids at the Northern Research Station, 1982-1992

I collected a lot of aphid data, most of which remains, along with the data from Side project 2, in these two notebooks, waiting to be entered into a spreadsheet.  I also collected some limited natural enemy data, presence of aphid mummies and numbers killed by entomopathogenic fungi.  Tree phenological data is limited to bud burst and leaf fall and as I only sampled five trees I’m not sure that this will ever amount to much, apart from perhaps appearing in my blog or as part of a book.  Nothing has as yet made it into print, so a nil return on investment.

Raw data – anyone wanting to help input into a spreadsheet, let me know 🙂 Also includes the data for Side project 2


Side project 2.  Rhopalosiphum padi on Prunus padus at Roslin Glen Nature Reserve 1982-1992

I was a lot more ambitious with this project, collecting lots of aphid and natural enemy data and also a lot more tree phenology data, plus noting the presence and counting the numbers of other herbivores.  I have got some of this, peak populations and egg counts in a spreadsheet and some of it has made it to the outside world (Leather, 1986, 1993: Ward et al., 1998).  According to Google Scholar, Ward et al., is my 6th most cited output with, at the time of writing, 127 citations, Leather (1993) is also doing quite well with 56 citations, while Leather (1986) is much further down the list with a mere 38 citations.  I have still not given up hope of publishing some of the other aphid data.  I mentioned that I also recorded the other herbivores I found, one was a new record for bird cherry (Leather, 1989), the other, the result of a nice student project on the bird cherry ermine moth (Leather & MacKenzie, 1994).  I would, I think, be justified in counting this side project as being worthwhile, despite the fact that I started it with no clear hypotheses and the only aim to count what was there.


Side project 3.  Everything you wanted to know about sycamores but were afraid to ask 1992-2012

As side projects go this was pretty massive.  Once a week for twenty years, me and on some occasions, an undergraduate research intern, walked along three transects of 52 sycamore trees, recording everything that we could see and count and record, aphids, other herbivores, natural enemies and tree data, including leaf size, phenology, height, fruiting success and sex expression.  My aim was pretty similar to that of Whittaker’s i.e.   “…to sample foliage insects in a series of natural communities and to obtain results of ecological significance from the samples”  truly a mega-project.  I once calculated that there are counts from over 2 000 000 leaves which scales up to something like 10 000 000 pieces of data, if you conservatively estimate five data observations per leaf. Quite a lot of the data are now computerized thanks to a series of student helpers and Vicki Senior, currently finishing her PhD at Sheffield University, but certainly not all of it. In terms of output, only two papers so far (Wade & Leather, 2002; Leather et al., 2005), but papers on the winter moth, sycamore and maple aphids and orange ladybird are soon to be submitted.  On balance, I think that this was also worthwhile and gave me plenty of early morning thinking time in pleasant surroundings and a chance to enjoy Nature.

The sycamore project – most of the raw data, some of which still needs to be computerised 🙂


Side project 5. Sixty bird cherry trees 1993-2012

This project has already featured in my blog in my Data I am never going to publish series and also in a post about autumn colours and aphid overwintering site selection.  Suffice to say that so far, thanks to my collaborator Marco Archetti, two excellent papers have appeared (Archetti & Leather, 2005; Archetti et al., 2009), the latter of which is my third most cited paper with 101 cites to date and the former is placed at a very respectable 21st place.  I don’t really see any more papers coming out from this project, but I might get round to writing something about the study as a whole in a natural history journal. On balance, even though only two papers have appeared from this project, I count this as having been a very worthwhile investment of my time.

All now in a spreadsheet and possibly still worthwhile delving into the data


Side project 5.  Urban ecology – Bracknell roundabouts 2002-2012

This started as a pedagogical exercise, which will be the subject of a blog post in the not too distant future. The majority of the field work was done by undergraduate and MSc students and in the latter years spawned a PhD student, so a side project that became a funded project 🙂 To date, we have published seven papers from the project (Helden & Leather, 2004, 2005; Leather & Helden, 2005ab; Helden et al., 2012; Jones & Leather, 2012; Goodwin et al., 2017) and there are probably two more to come.  Definitely a success and a very worthwhile investment of my time.  The story of the project is my most requested outreach talk so also gives me the opportunity to spread the importance of urban ecology to a wider audience.

The famous roundabouts – probably the most talked and read about roundabouts in the world 🙂 Sadly Roundabout 1 i n o longer with us; it was converted into a four-way traffic light junction last year 😦


Side project 6.  Testing the Janzen-Connell Hypothesis – Silwood Park, 2005-2012

I mentioned this project fairly recently so will just link you to it here.  So far only one paper has come out of this project (Pigot & Leather, 2008) and I don’t really see me getting round to doing much more than producing another Data I am never going to publish article, although it does get a passing mention in the book that I am writing with former colleagues Tilly Collins and Patricia Reader.  It also gave undergraduate and MSc project students something to do.  Overall, this just about counts as a worthwhile use of my time.

Most of this is safely in a spreadsheet but the data in the notebooks still needs inputting

According to my data base I have published 282 papers since 1980 which given that I have supervised 52 PhD students, had 5 post-docs, and, at a rough estimate, supervised 150 MSc student projects and probably 200 undergraduate student projects doesn’t seem to be very productive 😦 Of the 282 papers, 125 are from my own projects, which leaves 139 papers for the post-docs and PhD students and 17 from the side projects.  Three of the papers published from the side projects were by PhD students, so if I remove them from the side projects that gives an average of 2.3 papers per side project and 2.4 papers per post-doc and PhD student.   So, in my opinion, yes, side projects are definitely worth the investment.



Archetti, M. & Leather, S.R. (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos, 110, 339-343.

Archetti, M., Döring, T.F., Hagen, S.B., Hughes, N.M., Leather, S.R., Lee, D.W., Lev-Yadun, S., Manetas, Y., Ougham, H.J., Schaberg, P.G., & Thomas, H. (2009) Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends in Ecology & Evolution, 24, 166-173.

Goodwin, C., Keep, B., & Leather, S.R. (2017) Habitat selection and tree species richness of roundabouts: effects on site selection and the prevalence of arboreal caterpillars. Urban Ecosystems, 19, 889-895.

Helden, A.J. & Leather, S.R. (2004) Biodiversity on urban roundabouts – Hemiptera, management and the species-area relationship. Basic and Applied Ecology, 5, 367-377.

Helden, A.J. & Leather, S.R. (2005) The Hemiptera of Bracknell as an example of biodiversity within an urban environment. British Journal of Entomology & Natural History, 18, 233-252.

Helden, A.J., Stamp, G.C., & Leather, S.R. (2012) Urban biodiversity: comparison of insect assemblages on native and non-native trees.  Urban Ecosystems, 15, 611-624.

Jones, E.L. & Leather, S.R. (2012) Invertebrates in urban areas: a review. European Journal of Entomology, 109, 463-478.

Leather, S.R. (1986) Host monitoring by aphid migrants: do gynoparae maximise offspring fitness? Oecologia, 68, 367-369.

Leather, S.R. (1989) Phytodecta pallida (L.) (Col., Chrysomelidae) – a new insect record for bird cherry (Prunus padus). Entomologist’s Monthly Magazine, 125, 17-18.

Leather, S.R. (1993) Overwintering in six arable aphid pests: a review with particular relevance to pest management. Journal of Applied Entomology, 116, 217-233.

Leather, S.R. & Helden, A.J. (2005) Magic roundabouts?  Teaching conservation in schools and universities. Journal of Biological Education, 39, 102-107.

Leather, S.R. & Helden, A.J. (2005) Roundabouts: our neglected nature reserves? Biologist, 52, 102-106.

Leather, S.R. & Mackenzie, G.A. (1994) Factors affecting the population development of the bird cherry ermine moth, Yponomeuta evonymella L. The Entomologist, 113, 86-105.

Leather, S.R., Wade, F.A., & Godfray, H.C.J. (2005) Plant quality, progeny sequence, and the sex ratio of the sycamore aphid, Drepanoisphum platanoidis. Entomologia experimentalis et applicata, 115, 311-321.

Pigot, A.L. & Leather, S.R. (2008) Invertebrate predators drive distance-dependent patterns of seedling mortality in a temperate tree Acer pseudoplatanus. Oikos, 117, 521-530.

Steinbeck, J. (1954) Sweet Thursday, Viking Press, New York, USA.

Wade, F.A. & Leather, S.R. (2002) Overwintering of the sycamore aphid, Drepanosiphum platanoidis. Entomologia experimentalis et applicata, 104, 241-253.

Ward, S.A., Leather, S.R., Pickup, J., & Harrington, R. (1998) Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts? Journal of Animal Ecology, 67, 763-773.

Whittaker, R.H. (1952) A Study of summer foliage insect communities in the Great Smoky Mountains. Ecological Monographs, 22, 1-44.



I was so impressed by this piece of philosophy that it is quoted in the front of my PhD thesis 🙂


My second post-doc was only for two years.


You may wonder why I keep emphasising early morning in relation to surveying sycamore aphids.  Sycamore aphids are very easy to disturb so it is best to try and count them in the early morning before they have a chance to warm up and become flight active.



Filed under EntoNotes, Roundabouts and more

Ten papers that shook my world – watching empty islands fill up – Simberloff & Wilson (1969)

Sadly this is the tenth and last in my series of the ten papers that had a great influence on my life as an ecologist.  I’m going to cheat somewhat and actually discuss three papers. In my defence they are extremely closely linked and I am pretty certain that in today’s publishing world they would all have had to have been combined anyway.  That aside, I really liked this experiment the first time I read about it and still rate it very highly.  I would, however, love to be able to travel back in time and give them a couple of hints with the benefit of hind-sight, although as the authors are two of the greatest living ecologists, Dan Simberloff and E O Wilson, I might be a bit apprehensive doing so 🙂 In any case, much of what I would have said was addressed a few years later (Simberloff, 1976).

Wilson and Simberloff wanted to practically test the island biogeography theory famously described by McArthur and Wilson a few year earlier (MacArthur & Wilson, 1967).  To do this they travelled to the Florida Keys and after due reconnaissance decided that the many mangrove “tree islands” would be ideal study sites (Figure 1).  Then came the really cool bit.


Figure 1.  Two of the experimental ‘islands’ from Wilson & Simberloff (1969)

They set about removing the arthropod animal life from nine of the islands (Figure 2), or as much as they could, by fogging with methyl bromide; not something we could do now.  They then monitored the islands at frequent intervals for the next year.  They had of course surveyed the islands before they fumigated them.


Figure 2.  What a cool project; defaunation in progress – from Wilson & Simberloff (1969)


Figure 3. Island equilibria – from Simberloff & Wilson (1970)

The major finding from their study was that recolonization happened quite quickly and that a year later had pretty much reached an equilibrium position (Figure 3).  Another important finding and one that has important implications for restoration and conservation strategies was that two years after the defaunation event, although the islands were well populated, the species composition, except for one island was less than 40% similar to the original inhabitants (Simberloff & Wilson (1970).  Most species present were new to those islands.  The analysis of the data presented in the two data papers is rather basic, some of the key island biogeographical premises are not addressed at all and I wondered why they had not done so.  Their data are all shown in some detail so it is possible to do some more analysis, which I took the liberty of doing.  The extra analysis shows why they did not discuss area effects per se .  The only significant relationship that I could find was that between the number of species and the distance from the ‘mainland’ source (Figure 4), which as predicted by MacArthur & Wilson (1967) was negative. Sadly, island size did not correlate with species number (Figure5).   Finally, there was a positive, but not significant relationship between the initial number of species found on an island and the number a year later (Figure 6).


Figure 4.  Relationship between distance from ‘mainland’ source and the number of arthropod species present (R2 = 0.65, P <.0.05) Data from Simberloff & Wilson (1970).


Figure 5.  Island diameter and number of arthropod species (not statistically significant, r2 = 0.19, although I am sure many politicians would view this as a positive trend). Data from Simberloff & Wilson (1970)


Figure 6.  Initial number of species on an island and number of species present one year later. Although it looks convincing (r2 = 0.54), there are too few observations to reach statistical significance.  Data from Simberloff & Wilson (1970)

Although this work was extremely influential, (my Bracknell roundabouts study owes a lot to it), there were two major flaws in the original experimental design.  Firstly the number of islands was very low, but of course this is understandable, given the effort and complex logistics required to remove the arthropods safely (Figure 2).  The other flaw was that the islands did not cover a large enough range of sizes, thus making it less likely for the species-area pattern to be detected which was a great shame.

As I mentioned earlier, these short-comings were not ignored by the authors, and a few years later Sinberloff (1976) reported the results of an enhanced study, again in the Florida Keys, where he was able to convincingly demonstrate the species-area effect.   I guess that this was pretty satisfying as it tied up a number of loose strings.  He also managed to get the phrase “flogging a dead horse” into his introduction 🙂

Of the three papers, Simberloff & Wilson (1969) is the most highly cited (according to Google Scholar, 618 to date) and became a “citation classic”* in 1984 at which time it had accumulated 164 citations.  Simberloff & Wilson (1970) has attracted 252 cites with Wilson & Simberloff (1969) trailing in third with a mere 158 cites.  As a point of interest, Simberloff (1976) has so far received 313 cites.  To reiterate, the original mangrove island study, despite its flaws was a fantastic piece of work and Sinberloff and Wilson won the Mercer Award of the Ecological Society of America for this work in 1971.

I can think of no better person to explain why Simberloff & Wilson (1969) deserves its place in the Ecological Hall of Fame than Simberloff himself who in the commentary to the 1984 citation classic article wrote “I think the main reason it is cited, however, and its lasting contribution, is not so much that it supports the [equilibrium] theory, as that it reported a field experiment on ecological communities, and thus seemed dramatically different from the correlative approach that dominated this field



MacArthur, R.H. & Wilson, E.O. (1967) The Theory of Island Biogeography Princeton University Press, Princeton.

Simberloff, D. (1976)  Experimental zoogeography of islands: effects of island size.  Ecology, 57, 629-648.

Simberloff, D. & Wilson, E.O. (1969) Experimental zoogeography of islands: the colonization of empty islands. Ecology, 50, 278-296.

Simberloff, D. & Wilson, E.O. (1970) Experimental zoogeography of islands: a two-year record of colonization. Ecology, 51, 934-937.

Wilson, E.O. & Simberloff, D. (1969) Experimental zoogeography of islands: defaunation and monitoring techniques. Ecology, 51, 267-278.



Filed under Ten Papers That Shook My World

Entomological Classics – Southwood 1961 – The number of insect species associated with various trees


Nineteen-Sixty-One  was a momentous  year for entomology and ecology, although at the time I suspect few realised it.  Skip forward to 2013 when The British Ecological Society published a slim volume celebrating  the 100 most influential papers published in the Society’s journals.  The papers included in the booklet were selected based on the opinions of 113 ecologists from around the world, who were then asked to write a short account of why they thought that paper influential.  I was disappointed not to be asked to write about my nomination but instead asked to write about Maurice Solomon’s 1949 paper in which he formalised the term functional response.

The paper I had wanted to write about was included, but John Lawton had the privilege of extolling its virtues, and given the word limits did a pretty good job.  I do, however, feel that given its importance to ecology and entomology it deserves a bit more exposure, so I am taking the opportunity to write about it here.  I could have included this post in a series I have planned, called Ten Papers that Shook My World, but given the impact that this paper has had on entomologists I felt it deserved an entry in my Entomological Classics series.

For those of you who haven’t come across this paper before, this was an astonishingly influential paper.  Basically, Southwood, who despite his later reputation as one of the ecological greats, was an excellent entomologist, (in fact he was a Hemipterist), wanted to explain why some tree species had more insect species associated with them than others.  He made comparisons between trees in Britain, Russia and Cyprus and demonstrated that those trees that were more common and had a wider range had more insect species associated with them (Figure 1).

Southwood 1961 Fig 1

From Southwood 1961.  I was surprised to see that he had committed the cardinal error in his Figure caption of describing it as Graph and also including the regression equation in the figure pane; two things that I constantly reprimand students about!

Importantly he also showed that introduced trees tended to have fewer insects than native species.  He thus hypothesised that the number of insects associated with a tree species was proportional to its recent history and abundance and was a result of encounter rates and evolutionary adaptation.  He then tested this hypothesis using data on the Quaternary records of plant remains from Godwin (1956) making the assumption that these were a proxy for range as well as evolutionary age.

He commented on the outliers above and below the line suggesting that those above the line were a result of having a large number of congeners and those below the line either as being taxonomically isolated and/or very well defended.

He then went on to test his ideas about the evolutionary nature of the relationship by looking at trees and insects in Hawaii, (ironically this appeared in print (Southwood, 1960), before the earlier piece of work (Journal of Animal Ecology obviously had a slower turnaround time in those days than they do now).

Hawaiin figure

Figure 2.  Relationship between tree abundance and number of insect species associated with them (drawn using data from Southwood 1960).

Considering the research that these two papers stimulated over the next couple of decades, what I find really odd, is that Southwood, despite the fact that he was dealing with data from islands and that Darlington (1943) had published a paper on carabids on islands and mountains in which he discussed species-area relationships and further elaborated on in his fantastic book (Darlington, 1957), did not seem to see the possibility of using the species-area concept to explain his results.  It was left to Dan Janzen who in 1968 wrote

It is unfortunate that the data on insect-host plant relationships have not in general been collected in a manner facilitating analysis by MacArthur and Wilson’s methods (as is the case as well with most island biogeographical data). What we seem to need are lists of the insect species on various related and unrelated host plants, similarity measures between these lists (just as in Holloway and Jardine’s 1968 numerical taxonomic study of Indo- Australian islands), knowledge of the rates of buildup of all phytophagous insect species on a host plant new to a region, where these species come from, etc. Obviously, the insect fauna must be well known for such an activity. The English countryside might be such a place; it has few “islands” (making replication difficult) but a very interesting “island” diversity, with such plants as oaks being like very large islands and beeches being like very small ones, if the equilibrium number of species on a host plant (Elton, 1966; Southwood, 1960) is any measure of island size.”


In 1973 Dan Janzen  returned to the subject of trees as islands and cited Paul Opler’s 1974 paper in relation to the fact that the number of  herbivorous insects associated with a plant increases with the size of the host plant population (Figure 3), and further reiterated

Opler Figure

Figure 3.  Opler’s 1974 graph showing relationship between range of oak trees in the USA and the number of herbivorous insect species associated with them.

 his point about being able to consider trees as ecological islands.  Opler’s 1974 paper is also interesting in that he suggested that this approach could be used for predicting pest problems in agricultural systems, something that Don Strong and colleagues did indeed do (Strong et al., 1977; Rey et al., 1981), and that the concept of habitat islands and the species-area relationship could be used when designing and evaluating nature reserves, something which indeed has come to pass.

Again in 1974 but I think that Strong has precedence because Opler cites him in his 1974 paper, Don Strong reanalysed Southwood’s 1961 data using tree range (based on the Atlas of the British Flora)  as the explanatory variable  (figure 4) to explain the patterns seen.

Strong Figure

Figure 4Strong’s reworking of Southwood’s 1961 insect data using the distribution of British trees as shown in Perring & Walters1 (1962).

The publication of this paper opened the floodgates, and papers examining the species-area relationships of different insect groups and plant communities proliferated (e.g  leafhoppers (Claridge & Wilson, 1976); bracken (Rigby & Lawton, 1981); leaf miners (Claridge & Wilson, 1982); rosebay willow herb (McGarvin, 1982), with even me making my own modest contribution in relation to Rosaceous plants   (Leather, 1985, 1986).

Although not nearly as popular a subject as it was in the 1980s, people are still extending and refining the concept  (e.g. Brändle & Brandl, 2001; Sugiura, 2010; Baje et al., 2014).

Southwood (1961) inspired at least two generations of entomologists and ecologists, including me, and is still relevant today.  It is truly an entomological (and ecological) classic.


Baje, L., Stewart, A.J.A. & Novotny, V. (2014)  Mesophyll cell-sucking herbivores (Cicadellidae: Typhlocybinae) on rainforest trees in Papua New Guinea: local and regional diversity of a taxonomically unexplored guild.  Ecological Entomology 39: 325-333

Brändle, M. &Brandl, R. (2001). Species richness of insects and mites on trees: expanding Southwood. Journal of Animal Ecology 70: 491-504.

Claridge, M. F. &Wilson, M. R. (1976). Diversity and distribution patterns of some mesophyll-feeding leafhoppers of temperate trees. Ecological Entomology 1: 231-250.

Claridge, M. F. &Wilson, M. R. (1982). Insect herbivore guilds and species-area relationships: leafminers on British trees. Ecological Entomology 7: 19-30.

Darlington, P. J. (1943). Carabidae of mountains and islands: data on the evolution of isolated faunas and on atrophy of wings. Ecological Monographs 13: 37-61.

Darlington, P. J. (1957). Zoogeography: The Geographical Distribution of Animals. New York: John Wiley & Sons Inc.

Elton, C. S. (1966). The Pattern of Animal Communities. Wiley, New York.

Holloway, J. D., & Jardine, N. (1968). Two approaches to zoogeography: a study based on the distributions of butterflies, birds and bats in the Indo-Australian area. Proceedings of the Linnaean Society. (London) 179:153-188.

MacArthur, R. H. & Wilson, E.O. (1967). The Theory of Island Biogeography. Princeton University Press, Princeton, N. J

Janzen, D. H. (1968). Host plants as islands in evolutionary and contemporary time. American Naturalist 102: 592-595.

Janzen, D. H. (1973). Host plants as islands II.  Competitive in evolutionary and contemporary time. American Naturalist 107: 786-790.

Kennedy, C.E.J. & Southwood, T.R.E. (1984) The number of species of insects associated with British trees: a re-analysis. Journal of Animal Ecology 53: 455-478.

Leather, S. R. (1985). Does the bird cherry have its ‘fair share’ of insect pests ? An appraisal of the species-area relationships of the phytophagous insects associated with British Prunus species. Ecological Entomology 10: 43-56.

Leather, S. R. (1986). Insect species richness of the British Rosaceae: the importance of hostrange, plant architecture, age of establishment, taxonomic isolation and species-area relationships. Journal of Animal Ecology 55: 841-860.

Macgarvin, M. (1982). Species-area relationships of insects on host plants: herbivores on rosebay willowherbs. Journal of Animal Ecology 51: 207-223.

Opler, P. A. (1974). Oaks as evolutionary islands for leaf-mining insects. American Scientist 62: 67-73.

Perring, F.J. & Walters, S.M. (1962) Atlas of the British Flora BSBI Nelson, London & Edinburgh.

Preston,  C.D., Pearman, D.A. & Tines, T.D. (2002) New Atlas of the British and Irish Flora: An Atlas of the Vascular Plants of Britain, Ireland, The Isle of Man and the Channel Islands. BSBI, Oxford University Press

Rigby, C. & Lawton, J. H. (1981). Species-area relationships of arthropods on host plants: herbivores on bracken. Journal of Biogeography 8: 125-133.

Solomon, M. E. (1949). The natural control of animal populations. Journal of Animal Ecology 18: 1-35

Southwood, T. R. E. (1960). The abundance of the Hawaiian trees and the number of their associated insect species. Proceedings of the Hawaiian Entomological Society 17: 299-303.

Southwood, T. R. E. (1961). The number of species of insect associated with various trees. Journal of Animal Ecology 30: 1-8.

Sugiura, S. (2010). Associations of leaf miners and leaf gallers with island plants of different residency histories.  Journal of Biogeograpgy 37: 237-244

Rey, J.R.M.E.D. & Strong, D.R. (1981) Herbivore pests, habitat islands, and the species area relation. American Naturalist 117: 611-622.

Strong, D. R. (1974). The insects of British trees: community equilibrium in ecological time. Annals of the Missouri Botanical Gardens 61: 692-701.

Strong, D.R., D., M.E., & Rey, J.R. (1977) Time and the number of herbivore species: the pests of sugarcane. Ecology 58: 167-175



The Atlas of the British Flora by Perring and Walters (1962) was an iconic piece of work, although not without its flaws.  As with many distribution atlases it is based on a pence or absence score of plant species within one kilometre squares.  So although it is a good proxy or range it does not necessarily give you an entirely reliable figure for abundance.  A dot could represent a single specimen or several thousand specimens.   Later authors attempted to correct for this by using more detailed local surveys e.g. tetrads.  It must have been particularly galling for  Southwood that the Atlas didn’t appear until after he had published his seminal papers, but he later made up for it by reanalysing and extending his data from that original 1961 paper (Kennedy et al., 1984).

Those of us working in this area using the original Atlas had to count the dots by hand, a real labour of love especially for those widely distributed species; the new edition (Preston et al., 2002) actually tells you how many dots there are so the task for the modern-day insect-plant species-area relationship worker is much easier 😉


Filed under Entomological classics, EntoNotes, Ten Papers That Shook My World