Tag Archives: sweep netting

It might have been wet, but we had a great time – British Ecological Society Undergraduate Summer School 2019 #BESUG19

 

The beginning of July was a busy time for me, first a week of my Crop Protection Summer School based at Harper Adams University and the following week saw me driving north to Scotland. This time I was heading for the Isle of Great Cumbrae and the Field Studies Council Centre at Millport.

My trusty, rusty car, safely on board the ferry to Millport, leaving grey Largs behind me. I had to drive as I didn’t think I could cope with the Vortis and other collecting equipment on the train 😊

This was the fifth time that I have had the privilege of being allowed to introduce the wonders of entomology to undergraduates aspiring to careers in ecology.  I first joined the BES undergraduate summer school team in 2015 at the inaugural event at Malham Tarn.  On that occasion I did it on my own but since 2016 the entomology team has been greatly strengthened by the very welcome addition of my former student Fran Sconce, now the Outreach Officer at the Royal Entomological Society.

When I arrived in the afternoon it wasn’t raining, although it was rather grey. Fran arrived shortly afterwards and we did the preliminary setting up, getting the lab ready, digging in pitfall traps and deploying the yellow pan traps.  I also gave Fran a quick tutorial in how to use the Vortis as next year, sadly, the Summer School clashes with the International Congress of Entomology which is where I will be instead.

Fran helping with preliminary setting up and learning (after all these years), how to use the Vortis suction sampler.

Yellow pan traps deployed in the hope that the rain forecasted for the night won’t make them overflow 😊

After we had got everything set up, we went for a drive round the island – it didn’t take very long but there was some spectacular scenery on offer, despite the grey skies.

 

View of Bute in the distance.

This must be fantastic when the sun shines.

We then joined the students for our evening meal; after a week of Harper Adams’s excellent catering, I can’t bring myself to call it dinner 😊  It was, however, a great chance to get to know some of the students ahead of our ‘Entomology Day’.  I also took the opportunity to go and listen to Natalia Pilakouta from the University of Glasgow who gave a very entertaining and informative talk about the effects of climate change on sociality.   A whole new concept to me; who would have thought that rising temperatures would affect how individuals interact.  What really made her talk memorable was that she interspersed human examples amounts the sticklebacks and dung beetles 😊 You can also find her on Twitter @NPilakouta

Chris Jeffs (another former student of mine) introducing Natalie Pilakouta for the first plenary of the course.

The bar finally opened at 9 pm where I hastily made my way to get a glass of red wine; after a lifetime of having wine with my evening meal, I was in sore need of this 😊.  It also gave me a chance to meet some more of the students and to get to know them a bit better.   Thence to bed hoping that the weather forecast for Tuesday was wrong.

Unfortunately the Meteorological Office got it right and the view from my bedroom window at 6 am was not quite what I had hoped to see.

The view from my window – Dawn Entomology Day!

Us entomologists are a hardy lot and despite the weather and the slight handicap it put on the use of sweep nets and other sampling devices we headed out to the field, but not before I had subjected the students to my introductory lecture extolling the virtues of insects and their extremely important roles in ecology.

A no-brainer really – if you are a zoologist/ecologist, insects are where it’s at 😊

Once out in the field, despite the rain we had a lovely time pooting, sweeping, beating and using the Vortis, all good fun and as my old games teacher used to say as he ushered us out into the rain to run a cross-country or play rugby, “Character building”.  More seriously though, it was a good introduction to ecological field work and the concept of environmental variability, the sun doesn’t shine all the time.

Sweeping, beating and sucking and perhaps contemplating a swim?

After forty minutes of running about in the rain we headed back to the lab for an hour of sorting and identification for everyone before we started the ‘expert’ session.  We were very pleased that 20% of the students stayed on for the extra hour of getting to grips with insect taxonomy.

Learning how to identify insects in the lab.

After the evening meal, it was time for the now, very traditional, glow in the dark insects and a lecture on moth trapping from Fran.

Using UV torches and fluorescent dust to track carabid beetles.

Fran lecturing on moth trapping and then with the early risers helping her and Chris Jeffs empty and identify the catch; one of which made a bid for freedom, necessitating a bit of ladder work 🙂

Despite the rain we did catch some moths, this Swallowtail for me at least, was the star of the show.

Moths identified it was time for breakfast and getting the car packed; luckily the nets had all dried out overnight and heading for the ferry and the long trip back to Shropshire. It was a great couple of days and I really enjoyed it and am incredibly sad that I will not be able to take part next year. The whole event is a great initiative by the BES, and I am glad that it and the allied summer school for ‘A’ Level students are now a firmly established part of the ecological calendar.   I have only described entomology part of the week, other things were happening; for an excellent account of the whole week I recommend this blog post by one of the students, and not just because she gave me a good report 😊  You can follow her on Twitter too @ecology_student and track down the other comments about the week by using #BESUG19

Although it rained quite hard at times we never had to use this 😊

In terms of hard-core entomology,  this was actually my second collecting insects in the rain experience of the year – you may remember it rained in Bristol!

I am very grateful to the British Ecological Society for inviting me to participate in the first ever Summer School and to keep on inviting me back.  Special thanks to Fran and Chris and also to Christina Ravinet (whom I also taught) from the BES for keeping things running so smoothly.

Advertisements

2 Comments

Filed under Teaching matters

Entomological classics – The D-Vac, Vortis and other motorised suction samplers

I think that all field entomologists of a certain age, certainly those of us over 60, are very familiar with the roar of a hot and smoky two-stroke engine in our ears, coupled with oily hands, aching shoulders and sometimes the smell of burning.  Some younger entomologists may also have had this joyful experience but I suspect they are in a minority among their peers.  The dreaded D-Vac, or to give it its more formal name, The Dietrick Vacuum Sampler was, for a long time, the entomological gold standard in the world of motorised insect sampling.

Part of the UEA cereal aphid research group demonstrating unsafe use of the D-Vac 😊

The D-Vac was the brain wave of an American entomologist Everett Dietrick, who at the time was working on the biological control of the alfalfa aphid, Therioaphis maculata (Dietrick et al., 1959). Their research was hampered by the time they were having to spend estimating the numbers of all the arthropods found in alfalfa fields; they needed a standard sampling method that would allow them to get good estimates of everything rather than using different, and thus time-consuming, methods for each arthropod group.  Essentially, think of a D-Vac as motorised sweep net.  The idea of replacing sweep netting with, in theory at any rate, a non-human biased method* was not new.  Hills (1933) in describing a motorised vacuum pipette for sampling leaf hoppers in beet points out that it is an adaptation of a device put together by a lab assistant in 1926.

The first motorised suction sampler? From Hills (1933) – The modified pipette collector

The first and even clumsier model of the D-Vac (Dietrick et al., 1959), but I suspect more pleasant to use than the back-pack version 🙂

The new improved back-pack version (Dietrick, 1961).  In my experience not very comfortable and on one occasion burst into flames while I was wearing it!

This could, with the aid of a handy pole be used to sample from the top of tall bushes. Not something I have tried so I can’t comment.

While searching for the earliest reference to a motorised suction device that was not a Pooter, I came across one invented a few years earlier than the D-Vac and used by the late, great Southwood of Ecological Methods fame among others, during his PhD (Southwood, 1955; Johnson et al., 1955), which I guess means that it was in operation well before 1955, although the actual full description was not published in a journal until a couple of years later (Johnson et al., 1957).

An earlier suction device used by the late great Southwood during his PhD (1955) (From Johnson et al., 1957).

Ensuring constancy of sample area (From Johnson et al., 1957)

It really does look like the vacuum cleaner we had when I was a kid 🙂

Amusingly, one of the early attempts to replace the D-Vac was actually based on this very vacuum cleaner (Arnold et al., 1973)

I was interested to see that the Johnson apparatus used a barrel to delineate the sample area, something advocated by my colleague Andy Cherrill (Zentane et al., 2016) when using his patent G-Vac, or “Chortis” as we jokingly call it 🙂

A couple of years after I started at Silwood Park and became involved in running the final year field course, a new and revolutionary insect suction sampler appeared on the market – The Vortis™ (Arnold, 1994).  This was lighter than the D-Vac, did not need a bag or net, easier to start, had an ‘idle’ function and mercifully did not have to be carried on your back 🙂

The Vortis™, overall a much pleasanter way to sample insects and generally much easier to start.  Invented in 1993 (Arnold, 1994).

 

Although not cheap, it was less expensive than the D-Vac. This became my suction sampler of choice although we kept our D-vac in good running order so that the students could compare the two samplers.  Surprisingly, few, if any, of the many users of The Vortis™ have done similarly, most just referring to the original description by Arnold (1994), e.g. Mortimer et al., (2002).  This is in marked contrast to the many studies that have compared the D-Vac with sweep-netting, pitfall trapping and swish net sampling (e.g. Johnson et al., 1957; Henderson & Whittaker, 1977; Hand, 1986; Schotzko & O’Keeffe, 1989; Standen, 2000; Brook et al., 2008). There is also a hand-held version of the D-Vac if anyone wants to compare that with the back-pack version.

Jan Dietrick poses with a D-Vac insect Vacuum in Ventura, Calif., on Monday, Oct. 16, 2006. (Photo by Bryce Yukio Adolphson/Brooks Institute of Photography ©2006) http://bryceyukioadolphson.photoshelter.com/image/I0000pmiujJcoGBI

This one looks easier to use than the backpack version but I have never seen it in operation. I am guessing that this was produced in response to the invention of the Vortis™.

Entomologists tend to have limited budgets when it comes to equipment, or anything for that matter, so it is not surprising that they soon came up with the idea of adapting garden leaf blowers into lightweight, inexpensive insect suction samplers (e.g. De Barro, 1991; Stewart & Wright, 1995). These are collectively known as G-Vacs (Zentane et al., 2016) presumably as a reference to their garden origin.

Andy Cherrill test driving his “Chortis” 🙂

 

My colleague Andy Cherrill has compared the catch composition of his own particular G-Vac with that of the Vortis™ and satisfied himself that it is as good as, if not better than the Vortis™ (Cherrill et al., 2017).  Importantly the cost of a G-Vac means that you can get, at least in the UK, six for the same price as a single Vortis™.

I leave you with two fun facts; the two largest motorised insect suction samplers that I have come across are both from the USA (where else?).  The first, mounted on the front of a truck, was used to collect parasites for the biological control of alfalfa aphids.

(1957) http://www.dietrick.org/articles/deke_truckvac.html  Used to collect parasites for mass release against alfalfa aphids.

 

The second, mounted on the front of a tractor was used to control Lygus bugs in strawberry fields in California (Pickel et al., 1994).  The driver/operator in the second example seems to be taking Health & Safety issues a bit more seriously than the team in the first 🙂

Lygus bug control in strawberries, California http://calag.ucanr.edu/Archive/?article=ca.v049n02p19

 

References

Arnold, A.J. (1994) Insect suction sampling without nets, bags or filters. Crop Protection, 13, 73-76.

Arnold, A.J., Needham, P.H. & Stevenson, J.H. (1973) A self-powered portable insect suction sampler and its use to assess the effects of azinphos methyl and endosulfan on blossom beetle populations on oil seed rape. Annals of Applied Biology, 75, 229-233.

Brook, A.J., Woodcock, B.A., Sinka, M. & Vanbergen, A.J. (2008) Experimental verification of suction sampler capture efficiency in grasslands of differing vegetation height and structure. Journal of Applied Ecology, 45, 1357-1363.

Cherrill, A.J., Burkhmar, R., Quenu, H. & Zentane, E. (2017) Suction samplers for grassland invertebrates: the species diversity and composition of spider and Auchenorrhyncha assemblages collected with Vortis (TM) and G-vac devices. Bulletin of Insectology, 70, 283-290.

De Barro, P.J. (1991) A cheap lightweight efficient vacuum sampler.  Journal of the Australian Entomological Society, 30, 207-20.

Dietrick, E.J. (1961) An improved backpack motor fan for suction sampling of insect populations.  Journal of Economic Entomology, 54, 394-395.

Dietrick, E.J., Schlinger, E.I. & van den Bosch, R. (1959) A new method for sampling arthropods using a suction collecting machine and modified Berlese funnel separator.  Journal of Economic Entomology, 52, 1085-1091.

Dietrick. E. J., Schlinger. E. I. & Garber, M. J. (1960). Vacuum cleaner principle applied in sampling insect populations in alfalfa fields by new machine method. California Agriculture January 1960, pp. 9-1 1

Doxon, E.D., Davis, C.A. & Fuhlendorf, S.D. (2011) Comparison of two methods for sampling invertebrates: vacuum and sweep-net sampling. Journal of Field Ornithology, 82, 60-67.

Hand, S.C. (1986) The capture efficiency of the Dietrick vacuum insect net for aphids on grasses and cereals. Annals of Applied Biology, 108, 233-241.

Henderson, 1. F. & Whitaker, T. M. (1977). The efficiency of an insect suction sampler in grassland. Ecological Entomology 2, 57-60.

Hills, O.A. (1933) A new method for collecting samples of insect populationsJournal of Economic Entomology, 26, 906-910.

Johnson, C.G., Southwood, T.R.E. & Entwistle, H.M. (1955) A method for sampling arthropods and molluscs from herbage by suction.  Nature, 176, 559.

Johnson, C.G., Southwood, T.R.E. & Entwistle, H.M. (1957) A new method of extracting arthropods and molluscs from grassland and herbage with a suction apparatus.  Bulletin of Entomological Research, 48, 211-218.

Mortimer, S.R., Booth, R.G., Harris, S.J. & Brown, V.K. (2002) Effects of initial site management on the Coleoptera assemblages colonising newly established chalk grassland on ex-arable land. Biological Conservation, 104, 301-313.

Pickel, C., Zalom, F.G.,  Walsh, D.B. & Welch, N.C. (1994) Efficacy of vacuum machines for Lygus Hesperus (Hemiptera: Miridae) control in coastal California strawberries. Journal of Economic Entomology, 87, 1636-1640.

Schotzko, D.J. & O’Keeffe, L.E. (1989) Comparison of sweep net., D-Vac., and absolute sampling., and diel variation of sweep net sampling estimates in lentils for pea aphid (Homoptera: Aphididae)., Nabids (Hemiptera: Nabidae)., lady beetles (Coleoptera: Coccinellidae)., and lacewings (Neuroptera: Chrysopidae). Journal of Economic Entomology, 82, 491-506.

Southwood, T.R.E. (1955). Some Studies on the Systematics and Ecology of Heteroptera.—Ph.D. thesis, University of London.

Standen, V. (2000) The adequacy of collecting techniques for estimating species richness of grassland invertebrates. Journal of Applied Ecology, 37, 884-893.

Stewart, A.J.A. & Wright, A.F. (1995) A new inexpensive suction apparatus for sampling arthropods in grassland.  Ecological Entomology, 20, 98-102.

Zentane, E., Quenu, H., Graham, R.I. & Cherrill, A.J. (2016) Suction samplers for grassland invertebrates: comparison of numbers caught using Vortis and G-vac devices.  Insect Conservation & Diversity, 9, 470-474.

*

2 Comments

Filed under Entomological classics

Entomological classics – the sweep net

I am certain that everyone who has studied biology at university and/or been on a field course, will have used a sweep net and heard the phrase “It’s all in the wrist”.  Along with the pitfall trap it is the most commonly used entomological sampling technique used today.  Although the premise is simple enough, a sturdy net, attached to a handle that is swept along, through or above low-lying vegetation, when used as a scientific tool and not just as a collecting device, things become somewhat more complex.  The sweep net, as an insect collecting device, has been around for at least 180 years, the earliest reference that I have been able to find being Newman* (1835).  There are a number of slightly later references in both general entomology texts and group specific books (e.g. Newman, 1844; Clark, 1860; Douglas, 1860; Douglas & Scott, 1865). Instructions for their use at this time are minimal, as this extract from Newman (1841) illustrates.

Newman (1841) a very brief description indeed.

This slightly later description of how to make a sweep net is, however, much more detailed, albeit somewhat sexist.

From Stainton (1852), although he seems to be quoting Newman.  Apparently Victorian men were unable to sew.

More detailed, albeit fairly basic instructions on how to use a sweep net can be found in those two invaluable sources, Ecological Methods (Southwood & Henderson 2004) (two pages) and Practical Field Ecology (Wheatear et al., 2011) (one page).  I was amused to see that the text in Southwood & Henderson was identical to that of the first edition (Southwood, 1966).

Now we come to the wrist action. There are a surprising number of ways in which you can swing a sweep net, but they all depend on the wrist moving your hand, and hence the net, in a figure of eight. The two most commonly used are what I think of as the one row side step, and the double front step.  In the former you walk in a straight line swinging the net backwards and forwards at your side, ideal for sampling a row crop. The latter, the double front step, is similar, but instead of swinging the net at your side, you swing it side to side in front of you as you walk along.  In a crop, this is great for sampling multiple rows, in a non-crop a good way of covering a nice wide area of vegetation. There are a further two techniques specifically designed for sweeping the upper part of vegetation, both originally devised for sampling soybean insects, the lazy-8 and the pendulum (Kogan & Pitre, 1980).  Both these involve having the net raised, the lazy-8 with the net raised above the crop at the back and front swings, whereas in the pendulum, the net is kept within the crop on the fore and reverse swings.  The final bit of wrist action, and arguably the most important and difficult to learn, is the flick-lock, which neatly seals the net and stops your catch escaping.

Having completed your sample of however many sweeps (remember a complete sweep is the figure of eight), and sealed your net, the next step is to transfer your catch to your collecting tubes, bags or jars.  A good sweep net, as well as being made from tough material, should be a bit sock shaped.  By this I mean that there is a ‘tail’ at the base of the net which helps make your catch more manageable if you are transferring directly to a plastic bag, as you are able to grab the net above the ‘tail’ end and push it into the collecting bag, before everting the net.

Two examples of sweep nets, a large and a small one.  You can also get a medium one in this series supplied by the NHBS web site for about £34. http://www.nhbs.com/professional-sweep-net

When I was a student, the sweep nets we were supplied with, were large enough to stick not just your head inside, but also to get your arms in, so that you could Poot up anything interesting, your shoulders forming the seal to the net.  Admittedly you did sometimes have an angry bee or wasp to contend with, but that was a rare event 🙂  Nowadays, sweep nets seem to be constructed on a much more modest scale, which makes sticking your head, let alone your shoulders into one, somewhat difficult.

Even the biggest modern one is too small for me to get my arms in to do some Pooting.

I was pleasantly surprised on an ERASMUS exchange visit to the University of Angers a few years ago, to find that the French, or at least those in Angers, were using sweep nets that were big enough for me to actually delve inside just as I did when I was a student 🙂

The joys of a sweep net with a view 🙂

Despite their undoubted popularity, value for money and relative ease of operation, there are a number of problems associated with sweep netting as a sampling technique.  Although these problems are summarised elsewhere (Southwood & Henderson 2004; Wheater et al., 2011) I can’t resist putting my own personal slant on the subject.

  • The type of habitat can have a marked effect on what you catch. Not all habitats are equally amenable to sweeping; spiny and woody vegetation poses more problems than a nice meadow and you need a really tough net for moorlands 🙂
  • A sweep net doesn’t necessarily give you an accurate picture of the species composition of the habitat. Not all insects are equally catchable, you are for example, much more likely to catch Hemipterans than you are Coleopterans (e.g. Standen, 2000)
  • The vertical distribution of the insects also affects what you catch. Many insects have favourite positions on plants e.g. the cereal aphid, Sitobion avenae prefers the ears and leaves, whereas the bird cherry-oat aphid, Rhopalosiphum padi is usually found at the bottom of the plant (Dean, 1974).
  • The weather; anyone who has tried sweep netting during, or after, a rain storm knows that this is the ultimate act of folly 🙂 Wet nets and wet samples are not a marriage made in heaven.
  • Time of day can also affect what you are likely to catch, pea aphids for example, are found at different heights on their host plants at different times of day (Schotzko & O’Keeffe, 1989). To be fair, this is of course not just a problem confined to sweep net sampling.
  • Sweep nets have a fairly well-defined height range at which they work best, they are not good at sampling very short grass and once the vegetation gets over 30 cm you start to miss a lot of the insects associated with it as the net doesn’t reach that far down. Also the efficiency of the sweep netter is reduced.
  • Finally, how the hell do you standardise your sweeps, not only between sweepers, but as an individual? Additionally, can you reliably use them quantitatively? This has been recognised as a problem for a long time (DeLong, 1932).  No one disagrees that sweep netting, provided all the caveats listed above are taken into account, gives a very good qualitative and comparative idea of the arthropod community of the area you are sweeping and they have been so used in many important ecological studies (e.g. Menhinick, 1964; Elton, 1975; Janzen & Pond, 1975) and extensively in agricultural systems (e.g. Free & Williams, 1979; Kogan & Pitre, 1980).  Comparing any sampling technique with another is difficult, and any attempt to quantify a catch so that specific units can be assigned to the area or volume sampled is welcome.  This has been attempted for the sweep net (Tonkyn, 1980), although I confess that I have never seen anyone use the formula developed by him.  In fact, although, according to Google Scholar his paper has been cited thirteen times, only one of the citing authors actually uses the formula, the rest just use him to cite sweep netting as a sampling method. Poor practice indeed.

An illustration of how the various components of the sweep net volume formula is derived (from Tonkyn, 1980).

Sweep nets are, despite the inability to get inside them anymore, great fun to use, extremely good at collecting material for ecology and entomology practicals and of course, a great ecological survey tool when used properly.  Google Scholar tells me that there are over 38 000 papers that mention them.  That many people can’t possibly be wrong 🙂

References

Clark, H. (1860) Catalogue of the Collection of Halticidae in the British Museum. Physapodes and Oedipodes Part 1. Published by the Trustees, London.

Dean, G.J. (1974) The four dimensions of cereal aphids. Annals of Applied Biology, 77, 74-78.

DeLong, D.M. (1932) Some problems encountered in the estimation of insect populations by the sweeping method.  Annals of the Entomological Society of America, 25, 13–17.

Douglas, J.W.  (1856) The World of Insects: A Guide to its Wonders. John van Voorst, London.

Douglas, J.W. & Scott, J. (1865) The British Hemiptera Volume I Hemiptera – Heteroptera. Ray Society, Robert Hardwicke, London.

Elton, C.S. (1975) Conservation and the low population density of invertebrates inside neotropical rain forest.  Biological Conservation, 7, 3-15.

Free, J.B. & Williams, I.H. (1979) The distribution of insect pests on crops of oil-seed rape (Brassica napus L.) and the damage they cause. Journal of Agricultural Science, 92, 139-149.

Janzen, D.H. & Pond, C.M. (1975) A comparison, by sweep sampling, of the arthropod fauna of secondary vegetation in Michigan, England and Costa Rica. Transactions of the Royal Entomological Society of London, 127, 33-50.

Kogan, M. & Pitre, H.N. (1980) General sampling methods for above-ground populations of soybean arthropods. Pp 30-60 [In] Sampling Methods in Soybean Entomology. (Eds.) M. Kogan & D.C. Herzog, Springer, New York.

Menhinick, E.F. (1964) A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 45, 859-861.

Newman, E. (1844) The Zoologist. A Popular Miscellany of Natural History, Volume 2. John van Voorst, London.

Newman, E. (1841) A Familiar Introduction to the History of Insects. John van Voorst, London.

Newman, E. (1835) The Grammar of Entomology. Frederick Westley & A.H. Davis, London.

Schotzko, D.J. & O’Keeffe, L.E. (1989) Comparison of sweep net., D-Vac., and absolute aampling., and diel variation of sweep net sampling estimates in lentils for pea aphid (Homoptera: Aphididae)., Nabids (Hemiptera: Nabidae)., lady beetles (Coleoptera: Coccinellidae)., and lacewings (Neuroptera: Chrysopidae). Journal of Economic Entomology, 82, 491-506.

Southwood, T.R.E. (1966) Ecological Methods, Methuen & Co., London.

Stainton, H.T. (1852) The Entomologist’s Companion; Being a Guide to the Collection of Microlepidoptera and Comprising a Calendar of the British Tineidae. John van Voorst, London.

Standen, V. (2000) The adequacy of collecting techniques for estimating species richness of grassland invertebrates.  Journal of Applied Ecology, 37, 884-893.

Tonkyn, D.W. (1980) The formula for the volume sampled by a sweep net.  Annals of the Entomological Society of America, 73,452-454.

Wheater, P.C., Bell, J.R. & Cook, P.A. (2011) Practical Field Ecology: A Project Guide, Wiley-Blackwell, Oxford.

 

*Of interest to me, but perhaps not to my readers, Edward Newman was one of the founder members of the oldest and most exclusive, yet low-key, entomological society in the world, The Entomological Club, of which I have the honour of being a member 😊 https://en.wikipedia.org/wiki/Edward_Newman_(entomologist)  founder member of the Entomological Club

 

 

3 Comments

Filed under Entomological classics

Being inspired by the BES

This week (20th July) I have had the privilege of being able to interact with 50 undergraduates (mainly just finished their first year) under the auspices of the British Ecological Society’s new undergraduate summer school held at the Field Studies Council’s Malham Tarn Centre. The scheme enables aspiring ecologists to have “an opportunity to enhance their existing knowledge with plenary lectures from senior ecologists, fieldwork, workshops, careers mentoring and more at a week-long residential course” This was especially pleasurable for me because as a school boy and student I spent several enjoyable camping holidays at Malham and it gave me an opportunity to take part in a field course again, something I have missed since leaving Silwood Park where I ran the now defunct annual two-week long Biodiversity & Conservation field course. The programme included two ecological luminaries and old friends of mine, Sue Hartley from the University of York and plant scientist and author, Ken Thompson formerly of Sheffield University and also Clare Trinder from the University of Aberdeen.  Also in the programme was conservation biologist, Stephanie Januchowski-Hartley,  and additional input from the Chartered Institute of Ecology & Environmental Management (CIEEM), microbial ecologist, Dr Rob Griffiths from CEH and ecologist Dr Peter Welsh of the National Trust.

I arrived mid-morning of the Tuesday, having driven up from Shropshire to Yorkshire the night before, having taken the opportunity to stay in the old family home in Kirk Hammerton before it is put up for sale. Whilst there I also set a few pitfall traps to collect some insects that we might not catch otherwise. As it happened they were a dismal failure, returning mainly spiders, harvestmen and woodlice, plus one nice carabid beetle, more of which later. The weather didn’t look all that promising for an insect sampling session but I kept my fingers crossed and hoped that it wouldn’t rain as much as it did almost 40 years ago when my best friend from school and I aborted our camping holiday at nearby Malham Cove after three days of solid rain 😉

Malham Tarn

Malham Tarn – not quite raining

  I was greatly amused on arriving to be greeted by a very large arachnid lurking on an outhouse.

Malham spider

We breed them big in Yorkshire!

Malham Tarn FSC

Malham Tarn Field Studies Centre

After checking my equipment and locating suitable sampling sites I joined the students, Karen Devine, the BES External Affairs manager and some of the PhD mentors for lunch. After lunch it was my slot, a chance to infect (sorry, inspire), fifty ecologically included undergraduates with a love of insects. After being introduced by Karen I launched into my talk to a very full room of students.

Karen Devine

Karen instilling order and attention 😉

Ready to be inspired

Ready and waiting to be inspired

The undergraduates came from thirty different UK universities with a strong female bias, 34:16. Exeter University had four representatives, with Reading, Liverpool John Moores, UCL and Bristol with three each. I was sorry to see that there were no students from my Alma mater Leeds, or from my former institution, Imperial College, once regarded as the Ecological Centre of the UK, although UEA where I did my PhD, had two representatives.  There was also one representative from my current place of work, Harper Adams University. Incidentally one of the students turned out to have gone to the same school that I did in Hong Kong, King George V School, albeit almost fifty years apart; a small world indeed.

I set the scene by highlighting how many insect species there are, especially when compared with vertebrates.

The importance of insects

The importance of insects and plants

Number of animal species

Or to put it another way

After a quick dash through the characteristics of insects and the problems with identifying them, exacerbated by the shortage of entomologists compared with the number of people working on charismatic mega-fauna and primates, I posed the question whether it is a sound policy to base conservation decisions on information gained from such a small proportion of the world’s macro-biota.

Then we were of into the field, although not sunny, at least it was not raining so I was able to demonstrate a variety of sampling techniques; sweep netting with the obligatory head in the bag plus Pooter technique, butterfly netting, tree beating and, as a special treat, motorized suction sampling, in this instance a Vortis.

Sampling

With aid of the PhD mentors and Hazel Leeper from the Linnaen Society, the students were soon cacthing interesting things (not all insects) and using the Pooters like experts.

Students sampling

Getting close up with the insects

I also let some of the students experience the joy of the Vortis, suitably ear-protected of course. All good things come to an end and it was then time to hit the microscopes, wash bottles, mounted pins and insect keys.

In teh lab

Getting stuck in – picture courtesy Amy Leedale

Down the microscope

What’s this?

I was very impressed with how well the students did at getting specimens down to orders and families and have every confidence that there are a number of future entomologists among them. After the evening meal, Kate Harrison and Simon Hoggart from the BES Publications Team introduced the students to the tactics of paper writing and publishing which I think they found something of an eye-opener. The students, after a rapid descent on the bar, enjoyed a Pub Quiz whilst I relaxed with a glass of wine until it was dark enough for me to demonstrate the wonders of using fluorescent dust to track our solitary carabid beetle using my UV torch before heading off to bed.

Fluorescent carabid Eloise Wells

Glow in the dark carabid beetle – the bright lights of Malham Tarn – photo courtesy of Eloise Wells

I was sorry to have to leave the next morning, it would have been great fun to have stayed the full week, but next year I do hope to be able to be there for at least two days and nights so that we can do pitfall trapping and light trapping and of course, have more fun with fluorescent insects.

I hope the students found the whole week inspirational and useful, I was certainly inspired by their obvious enjoyment and interest and will be surprised I if do not come across some of them professionally in the future.

Well done BES and congratulations to Karen and her team for providing such a great opportunity for the students. I am really looking forward to next year and being able to see great Yorkshire features like this in the sunshine 😉

Yorkshire grit

 

8 Comments

Filed under EntoNotes, Teaching matters, Uncategorized