Tag Archives: trapping

Entomological classics – the Window (pane) Flight Intercept Trap

A couple of years ago I received a paper to review in which the authors detailed how they had invented a new trap for sampling and collecting beetles in tropical forests. I was astounded to see that they were describing a window pane trap, something that I had known about since I was a student and which has been used by entomologists worldwide for many years.  I quite politely pointed this out in my review and directed the authors to Southwood ‘s Ecological Methods (1966).  The other referee was less tolerant, her/his report simply read “see Southwood page 193”.  At the time I wrote the review it was firmly stuck in my mind that the technique was as old as the hills, or at least as old the invention of cucumber frames 🙂  I certainly thought of it as a Victorian or Edwardian invention.  To my surprise when I started delving into the literature all the Victorian references to window traps turned out to be ways to protect households from invasion from houseflies and other unwanted flying insects; nothing to do with entomological sampling or collecting. E.g. this patent from 1856 where the inventor describes its operation as follows “The flies enter the trap through the passage B, as illustrated, and after satisfying their wants from the baitboard seek to escape, and being attracted by strong light from the glass back they fly in that direction and being headed out crawl up the glass back until they nearly reach the upper edge of the same, when, being still attracted and deluded by light from the glass top, they attempt to fly upward or through the same and in doing so instead of rising, are, owing to the inclination of the glass top, precipitated into the trough of soap suds and drowned, as illustrated in the drawing.

This fly trap is exceedingly simple, quite cheap, and only costs about twenty-five cents, and has been tried and found to answer well the purpose intended.”

1

Unfortunately not what I was looking for 🙂

Despite scouring Google and Google Scholar, to the lengths of even getting to page 30, which apparently no-one does, it seems that the earliest reference to what we think of as a Window (pane) trap was not invented until 1954 (Chapman & Kinghorn, 1955)  to sample Ambrosia beetles (Trypodendron spp.) and other scolytids in Canadian forests.  There is unfortunately no picture to illustrate the trap, but the written description is fairly clear “ a piece of window glass (2 X 2 ft) set in a three-sided wooden frame from which a sheet metal trough is hung. The trough is filled with fuel oil or water….Traps are hung from various types of pole framework  depending on their location, and guy wires are used to keep them from swinging.”  I am pretty certain that this 1954 date is the earliest record as even that vade mecum of the entomologist, Instructions for Collectors No. 4a (Smart, 1949) has no mention of it.

The theory behind the window (pane) trap is that flying insects are unable to see the clear glass (or Perspex), bang into it, and stunned, fall into the collecting trough where they drown to be collected and identified later. A fantastically simple idea, which is why I was surprised that it took entomologists so long to invent it. As far as I can tell from the written description given by Chapman & Kinghorn (1955), the trap was suspended from a ground based framework.  I think that this version I found in Chapman (1962) is probably the original design or at least very close to it.

2

Chapman & Kinghorn’s original window flight trap? Chapman (1962).

They also used this is a much more ambitious way as shown below.

3

Multiple Chapman & Kinghorn Window traps in operation (Chapman & Kinghorn, 1958).

This design in a slightly modified version  is shown in Lundberg (1979) and designs very

4

Ground based window trap in use in a Swedish forest (Lundberg, 1979).

similar to these are still in use.

5

A modern ground-based window(pane) flight intercept trap. http://www.qm.qld.gov.au/Find+out+about/Animals+of+Queensland/Insects/Collecting+insects/~/media/51C96B0159AF463C9E11CC1B100244DE.jpg?w=400&h=260&as=1

 

Despite its efficiency the ‘classic’ windowpane trap has perhaps not been used as much as it deserves, instead, a plethora of alternative designs have been described since the mid-1970s. So for example we have a small-scale tree hanging version, with a four-way window being used to catch forest coleoptera (Hines & Heikkenen, 1977).  Although the small area flight intercept traps were

6 6a

The Hines & Heikkenen (1977) small area window flight intercept trap.

relatively easy to deploy, they obviously just weren’t big enough for some people. In 1980, Peck & Davies, described a large-area window trap used to catch small beetles. This used the central panel of a Malaise trap as the window under which they placed a large metal collecting trough.  Unlike the Hines & Heikkenen trap, this like the original Chapman & Kinghorn trap, was ground-based.  The

7

The Peck & Davies(1980) large-area “window” trap.

authors, in an attempt to impose order on to the entomological collecting world, urge other coleopterists to adopt a similar trap design.  In 1981 we see a modification to the Hines & Heikkenen

8

The Omnidirectional flight trap (Wilkening et al., 1981).

trap to improve its efficiency (Wilkening et al., 1981).  Despite the name omnidirectional, implying that it catches insects from all directions,  this trap catches large fast-flying insects in the lower chamber, into which they fall stunned on bumping into the window pane and slow upwards flying insects in the upper chamber.  The authors argue that the original version of the trap did not catch slow-flying insects as they were able to detect the pane early enough to avoid being stunned and then took evasive action by flying up and away from the collecting bottle.  The new improved version takes advantage of this behaviour and traps them in the upper bottle into which they inadvertently fly.

In 1988, my fellow editor, Yves Basset, then at Griffiths University in Australia, now at the Smithsonian Tropical Research Institute in Panama, decided to combine a Malaise trap with a Hines & Heikkenen trap to produce what he called a composite interception trap (Basset, 1988),

9

The Basset composite interception trap (Basset, 1988).

10

The Basset composite trap in action. http://web.uvic.ca/~canopy/sampling.html

 

Despite this ingenious trap, trapping forest canopy insects obviously continued to occupy the minds of forest entomologists and in 1997 another pair of entomologists working in Australia came up with yet another design for a flight intercept trap, this time one that could be suspended at different heights in the canopy and left for long periods of time (Hill & Cermak, 1997). The novelty of this trap

11

The Hill & Cermak modified Window trap

 

as far as I can make out is the use of multiple collecting chambers (ice cream tubs) and a plastic instead of a Perspex, ‘window’.

Entomologists are forever tinkering and ‘improving’ with sampling methods, so it should not be a surprise to find a group of entomologsist from the USA describing the ultimate in a composite trap,  this time a combination of four different traps, the cone, the Malaise, the yellow pan trap and the flight intercept trap (Russo et al., 2011). Interestingly, the authors describe this as a passive trap,

x

The ultimate composite insect trap (Russo et al., 2011).

but as it incorporates a yellow pan trap, which actively attracts insects, this is not strictly true.

Returning to the more conventional flight intercept trap design, Lamarre et al (2012) compared their very slightly modified window pane trap with Malaise traps in tropical forests in French Guiana and

13

According to the paper, the first attempt to develop a standardised Window pane trap. https://commons.wikimedia.org/wiki/File%3AA_modified_windowpane_trap.jpeg

concluded that their model was more efficient and “should be used as an alternative and standardised method for future empirical studies”  a bold statement indeed, as they did not compare their trap with any of the other traditionally used window pane traps described above.

And finally and right up to date, and in the best entomological tradition of using cheap easily obtainable materials, yet another variant on the flight intercept trap; this time using plastic bottles – pop, soda, water, cider, beer, take your pick J (Steininger et al., 2015).

14

The simple, effective and accessible bottle window intercept trap. http://jee.oxfordjournals.org/content/108/3/1115

I am sure, however, that as I write, some ingenious entomologist out in the field somewhere, is thinking of yet another modification to the window (pane) flight intercept trap to make my post out of date!

 

References

Basset, Y. (1988) A composite interception trap for sampling arthropods in tree canopies.  Journal of the Australian Entomological Society, 27, 213-219

Chapman, J.A. (1962) Field studies on attack flight and log selection by the ambrosia beetle Trypodendron lineatum (Oliv.) (Coleoptera: Scolytidae). Canadian Entomologist, 94, 74-92

Chapman, J.A. & Kinghorn, J.M. (1955) Window flight traps for insects.  Canadian Entomologist, 87, 46-47.

Chapman, J.A. & Kinghorn, J.M. (1958) Studies of flight and attack activity of the ambrosia beetle, Trypodendron lineatum (Oliv.) and other Scolytids. Canadian Entomologist, 90, 362-372

Hill, C.J. & Cermak, M. (1997) A new design and some preliminary results for a flight intercept trap to sample forest canopy arthropods.  Australian Journal of Entomology, 36, 51-55

Hines, J.W. & Heikkenen, H.J. (1977) Beetles attracted to severed Virgina pine (Pinus virginiana Mill.). Environmental Entomology, 6, 123-127

Lamarre, G.P.A., Molto, Q., Fine, P.V.A. & Baraloto, C. (2012) A comparison of two common flight interception traps to survey tropical arthropods.  ZooKeys, 216, 43-55

Lundberg, S. (1979) Fångst av skallbaggar med hjälp av fönsterfällor. Entomologisk Tidskrift (Stockolm), 100, 29-32

Peck, S.B. & Davies, A.E. (1980) Collecting small beetles with large-area “window” traps.  Coleopterists Bulletin, 34, 237-239

Russo, L., Stehouwer, R., Heberling, J.M. & Shea, K. (2011) The composite insectrrap: an innovative combination trap for biologically diverse sampling.  PLoS ONE, 6, e21079.doi:10.1371/journal.pone.0021079

Wilkening, A.J., Foltz, J.L., Atkinson, T.H. & Connor, M.D. (1981) An omnidirectional flight trap for ascending and descending insects.  Canadian Entomologist, 113, 453-455

 

Postscript

Apropos of the ultimate composite trap, I came across this combination four-way window-yellow pan trap combination some years ago, but have not been able to find a published inventor of it.  I should also add that flight intercept traps are also sometimes known as impact traps.

15

*Vade mecum, a handbook or guide that is kept constantly at hand for consultation.

 

Advertisements

5 Comments

Filed under Entomological classics, EntoNotes

Entomological classics – the Light Trap

I think that even those of us who are not entomologists are familiar with the attraction that insects, particularly moths, have for light. The great Sufi philosopher Bahauddin Valad (1152-1231) wrote the following lines

a candle has been lit

inside me,

for which

the sun

is a moth.

 

In Shakespeare’s The Merchant of Venice (1596), Portia famously declaims “Thus hath the candle singed the moath.”

Moths and flame

It may thus come as a bit of surprise to realise that ‘modern’ entomologists were quite slow to develop bespoke traps that took advantage of this aspect of insect behaviour. That said, according to Beavis (1995) the Roman author Columella (Lucius Junius Moderatus, 4-7 AD), describes a light trap to be used to protect bee hives from wax moth attacks. A pretty much identical trap was still being used in 1565 (Gardiner, 1995) although he erroneously calls it the first light-trap. As far as I can tell the early ‘modern’ Lepidopterists used the white sheet technique, still used today, where a light source such as a paraffin lamp (nowadays an electric light or powerful torch) was suspended above or behind a white sheet, from which the intrepid entomologist collected specimens of interest that come to rest on the sheet. This can be very efficient but does require the entomologist to be ‘on duty’ throughout the trapping

White sheet

The white sheet technique.

period, although on a fine night, with good companionship and an ample supply of beer, or other alcoholic beverage, it can be a very pleasant way to spend a long evening 😉

The earliest published reference to a modern bespoke light trap that I have been able to find is a patent from 1847 for a modified beehive which includes a light trap to lure wax moths away from the main part of the hive (Oliver Reynolds, 184, US Patent5211; http://www.google.com/patents/US5211).

Reynolds beehive 3

The modified Reynolds Beehive incorporating moth trap.

The second published reference to a bespoke light trap is again one designed to control wax moths and is described in a patent application by J M Heard dated 1860. In this case as far as I can make out the lamp is actually glass coated with a phosphorescent material rather than using a candle or oil flame.

Figure 4

“The basin A, is supplied with a requisite quantity of molasses or other suitable substance to serve as a bait, and the inner sides of the glass plates c, of the lamp C, are covered with a mixture of phosphorus and oil or phosphorus combined with any suitable substance to form a cement, or a stick E, may be coated with the cement, said stick being passed through the tube e, into the lamp, as shown plainly in Fig. 1. The insects decoyed by the light and attracted by the bait, strike against the inclined glass plates c, and fall into the basin A. By having the plates c, inclined the insects are made to fall through the opening b, into the basin and said opening is permitted to be comparatively small and the cover a, of the basin in connection with the cover D, of lamp protect perfectly the bait from sun and rain, thereby protecting an unnecessary waste of the same. During the day the phosphorus of course is not needed unless it be cloudy, but the device is chiefly efficacious at night as the visits of the insects are mostly nocturnal.”

So whilst beekeepers and agriculturalists were busy using traps to attract moths to kill them what were the lepidopterists doing? It appears that they were using whole rooms as light traps as described here by H T Stainton in 1848.

Figure 5

 

A later Victorian entomological ‘how to’ book, added instructions of how to use gas and paraffin lamps outside, with the lepidopterist standing ready with his net (Greene, 1880).

The 20th Century was however, when we see the birth of the light traps as we know them today. First on the scene was the Rothamsted Trap, developed by the great C B Williams, which was

 

Rothamsted electric 6

The electric ‘fixed’ Rothamsted Trap.

Rothamsted portable 7

The ‘portable’ Rothamsted Trap – Williams (1948)

developed from earlier versions that he used in the 1920s and 1930s, in Egypt and England (Williams, 1924, 1935).

Rothamsted colour 8

Rothamsted trap in action

 

Apparently the first electrical light trap to use an ultra-violet light was made in 1938 (Barratt, 1989) and used in the 1940s (Fry & Waring, 2001) but it was not until 1950 that the first commercially available version was produced (Robinson & Robinson, 1950).

Robinson 9

The Robinson Trap – very popular and ideal for use in gardens where there is easy access to a mains supply.

 

Strangely, considering that the Americans had been first on the scene with patented light traps it was not until 1957 that the Pennsylvanian and Texas traps appeared on the scene (Frost, 1957) closely followed by the Texas traps (Hollingsworth et al., 1963). These traps used fluorescent tubes instead of bulbs and were particularly good at catching beetles, moths and ants. The Texas trap and the Pennsylvania trap were essentially the same, the main difference being that the Pennsylvania trap has a circular roof to prevent train entering the killing bottle. As Southwood (1966) somewhat tongue in cheek says, this may reflect the differences in the climate of the two states 😉

Pennyslvania 10

The Pennsylvanian Light Trap.

In the 1960s the Heath Trap appeared on the scene (Heath, 1965). This was billed as being extremely portable, being able to be carried in a back pack and also able to be run either from a mains supply or from a 12 volt battery.

Heath 11

The Heath Light trap.

Less expensive and more portable is the Skinner trap, (designed by Bernard Skinner in as far as I can make out in the early 1980s, please let me know if you know exactly) which comes in wooden and aluminium versions and is collapsible, so that if needed, several can be transported at once. It comes in both mains and battery versions.

Skinner elctric 12   Skinner portable 13

The Skinner light trap – relatively inexpensive and very portable.

An interesting combination of light and odour being used to attract and trap insects, in this case to ‘control’ them, is the Strube Stink bug trap. This is an American invention and is used to protect US householders against the the Brown Marmorated Stink Bug, Halyomorpha halys, an invasive species from Asia which appears to have developed a propensity to overwinter in people’s houses. I remember a few years ago that we in the UK were warned that it might cross the channel from France; this resulted in lurid headlines in the ‘Red Top’ newspapers with wording like ‘stench spraying insect’ being used 😉

Straub 14

Strube Stink Bug Trap

 

This appears to be a very effective trap; all the reviews I have read praise it highly, so if the Brown Marmorated Stink Bug does make it to the UK, the Strube trap will be the one to buy!

 

References

Frost, S.W. (1957) The Pennsylvanian light trap. Journal of Economic Entomology, 50, 287-292.

Fry, R. & Waring, P. (2001) A Guide to Moth Traps and their Use. Amateur Entomologist, Orpington, Kent.

Gardiner, B.O.C. (1995) The very first light-trap, 1565? Entomologist’s Record and Journal of Variation, 107, 45-46

Greene, J. (1880) The Insect Hunter’s Companion. W. Swan Sonnenschein & Allen, London.

Heath, J. (1965) A genuinely portable MV light trap. Entomologist’s Record and Journal of Variation, 77, 236-238.

Hollingsworth, J.P., Hartstock, J.G. & Stanley, J.M. (1963) Electrical insect traps for survey purposes. U.S.D.A. Agricultural Research Service 42-3-1, 10 pp.

Robinson, H.S. & Robinson, P.J.M. (1950) Some notes on the observed behaviour of Lepidoptera in the vicinity of light sources together with a description of a light trap designed to take entomological samples. Entomologist’s Gazette, 1, 3-20

Southwood, T.R.E. (1966) Ecological Methods. Chapman & Hall, London

Stainton, H.T. (1848) On the method of attracting Lepidoptera by light. The Zoologist, 6, 2030-2031

Williams, C.B. (1924) An improved light trap for insects. Bulletin of Entomological Research, 15, 57-60.

Williams, C.B. (1935) The times of activity of certain nocturnal insects, chiefly Lepidoptera, as indicate by a light-trap. Transactions of the Royal Entomological Society of London B, 83, 523-555.

Williams, C.B. (1948) The Rothamsted light trap.   Proceedings of the Royal Entomological Society of London A, 23, 80-85.

 

Post script

There are of course more light traps out there, many being variations of those described above, or for specific insect groups such as mosquitoes or aquatic traps for Cladocera (water fleas). Many ‘home made’ traps also exist, such as the ‘portable’ one I made for use on the field course that I used to run at Silwood Park.

Leather 15

The Leather Light Trap

I used a rechargeable battery lantern, but other light sources would also work. In retrospect I should have painted the Perspex black so that only the ‘entrance’ funnels emitted light. There was a tendency for insects to sit on the outside of the trap rather than enter it.

A useful link for those wishing to make their own traps can be found here http://www.theskepticalmoth.com/techniques/light-traps/ and Fry & Waring (2001) also has some very useful hints and tips.

 

 

4 Comments

Filed under Entomological classics, EntoNotes

Entomological classics – the pitfall trap

Pitfall arghh I would be amazed if there are any entomologists who have not deployed a pitfall trap or two at some stage in their career. I would also hazard a guess that quite a few non-entomological ecologists have come across the joys of pitfall trap setting and catch sorting as part of their undergraduate training; most field courses seem to include a pitfall trap day, and rightly so.  Pitfall trapping is after all, probably the simplest and most efficient way of collecting data, and not always insects 😉 Pitfall - tapir

Tapir pitfall trap

More seriously though, pitfall traps are a remarkably simple and incredibly versatile way of sampling insects, particularly those that are active on the soil surface (epigeal) e.g carabid beetles. Pitfall forest They can be used in most habitats where you are able to dig into the soil,

Pitfall traps cheap

are very cheap as they can be made from easily obtainable household materials Pitfall traps and can be modified easily depending on your objectives and sampling conditions.  It is very important however, that the lip of the trap is either flush with or below the soil surface.  Not very many beetles or other invertebrates,  are willing to climb up the steep sides  to allow you to capture them. Pitfall - spatial patterns They are also amenable to being deployed in a variety of statistically meaningful ways. (Figure ‘borrowed’ from Woodcock (2005)). Pitfall traps - catch a lot They are of course not perfect.   Some of my students complain that they catch too much!

There has been, and continues to be, much debate about what the catch actually represents.  Are they a measure of activity or of density, i.e. do the trap catches represent the most active and careless beetles, rather than the most abundant?  Southwood (1966) in the first edition of Ecological Methods is fairly dismissive of their use except as a way of studying the activity, seasonal incidence and dispersion of single species and considered them to be of no use whatsoever in comparing communities.  Other authors argue however, that if the trapping is carried out over a long period of time then the data collected can be representative of actual abundance (e.g. Gist & Crossley, 1973; Baars, 1979) and despite Southwood’s comments, they are probably most often used to compare communities (e.g. Rich et al., 2013; Zmihorski et al., 2013;  Wang et al., 2014) For a very thorough account of the use and abuse of pitfall traps see Ben Woodcock’s excellent 2005 article (and I am not just saying that because he is one of my former students). You might expect, given the fact that pitfalls were used by our remote ancestors to trap their vertebrate prey, that entomologists would have adopted this method of trapping very early on, especially given the fact that nature got there first, e.g. as used by larvae of the antlion. Antlion trap

Antlion ‘pitfall traps’.

I was therefore surprised when I started researching this article to find that the earliest reference I could find in the scientific literature was Barber (1931).  I found this very hard to believe so resorted to Twitter.  Richard Jones suggested that a sentence in Pitfall silver sand reference

Notes on Collecting and Preserving Natural History Objects

referring to silver sand pits might be a reference to an early form of pitfall trap.  On further research however, it turned out that sand pits were the results of sand mining operations and were used opportunistically by entomologists.  They worked in a very similar way to Pitfall - St Austell

St Austell Ruddle Moor Sand Pit http://www.cornwall-opc.org/Par_new/a_d/austell_st.php

intercept traps (the subject of a future post).   Interestingly, in some parts of the world, sand pits are now being restored in some places as conservation tools for digger wasp sand bees. Pitfall Bohemia

Sand pit restoration – Bohemia.  http://www.outdoorconservation.eu/project-detail.cfm?projectid=17

  But, I digress.  My next port of call was The Insect Hunter’s Companion (Greene, 1880) which I felt certain would mention pitfall traps.  To my surprise, in the 1880s, entomologists intent on capturing beetles, either pursued them with nets, turned over stones and logs, removed bark from trees, used beating trays or even dug holes in the ground, but never used pitfall traps!  So all very active and energetic methods – no sit and wait in those days 😉 So it seems that Barber’s 1931 description of a pitfall trap does indeed commemorate the first scientific use of a pitfall trap. Barber trap

The Barber trap (Barber, 1931).

Despite their late addition to the entomological armoury and despite the many criticisms levelled at their use, they continue to be perhaps the most widely used method of insect sampling ever; for example if you enter Beetle* AND pitfall* AND trap*  into the Web of Science you will return 1168 hits since 2000, which is more than one a week.  If you further refine your search to exclude beetle but add insect* you can add another 320 hits. If by some chance you have never used a pitfall trap, then I heartily recommend that you set one or two up in a convenient flower bed or even your lawn, and then sit back and wait and see what exciting beasties are roaming your garden.

Post script

Since this post was published I have discovered an earlier reference to the use of pitfall traps (Hertz, 1927).  Many thanks to Jari Niemelä  of Helsinki University for sending me a copy of the reference and many thanks to my eldest daughter for translating the relevant bit, which follows –  “The traps were made of meticulously cleaned tin cans (the rectangle ones used for e.g.  sardines) dug into the ground so deep that the top of the tin was absolutely level with the ground…… it is an ideal way to catch the beetles; with their careless way of running around, they easily fell into the deathtraps, and had no time to use their wings (if they have any)”.  The phrase deathtraps is particularly fine.  The majority of the paper is about the species he caught in different locations and he highlights the fact that he caught seven very rare species using this method.

So this is now the oldest known reference to the use of pitfall traps in the literature, although he does mention that he was using this method to catch beetles in 1914.  But if anyone comes across an earlier reference do let me know.

 

References

Baars, M.A. (1979) Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia, 41, 25-46.

Barber, H.S. (1931) Traps for cave inhabiting insects.  Journal of the Elisha Mitchell Scientific Society, 46, 259-266.

Gist, C.S. & Crossley, J.D.A. (1973) A method for quantifying pitfall trapsEnvironmental Entomology, 2, 951-952.

Greene, J. (1880) The Insect Hunter’s Companion: Being Instructions for Collecting and Describing Butterflies, Moths, Beetles, Bees, Flies, Etc.  

Hertz, M. (1927) Huomioita petokuoriaisten olinpaikoista.  Luonnon Ystävä, 31, 218-222

Rich, M.C., Gough, L., & Boelman, N.T. (2013) Arctic arthropod assemblages in habitats of differing shrub dominance. Ecography, 36, 994-1003.

Southwood, T.R.E. (1966) Ecological Methods, Chapman & Hall, London.

Wang, X.P., Müller, J., An, L., Ji, L., Liu, Y., Wang, X., & Hao, Z. (2014) Intra-annual variations in abundance and speceis composition of carabid beetles in a temperate forest in Northeast China. Journal of Insect Conservation, 18, 85-98.

Woodcock, B.A. (2005) Pitfall trapping in ecological studies.  Pp 37-57 [In] Insect Sampling in Forest Ecosystems, ed S.R. Leather, Blackwell Publishing, Oxford.

Zmihorski, M., Sienkiewicz, P., & Tryjanowski, P. (2013) Neverending story: a lesson in using sampling efficieny methods with ground beetles. Journal of Insect Conservation, 17, 333-337.

 

Post post script

Pitfall traps are even more versatile than you might think. Mark Telfer has developed a nifty subterranean version http://markgtelfer.co.uk/beetles/techniques-for-studying-beetles/subterranean-pitfall-traps-for-beetles/  and at the opposite end of the spectrum, pitfall traps have also been used in trees to sample spiders (Pinzon & Spence, 2008).

Reference Pinzon, J. & Spence, J. (2008) Performance of two arboreal pitfall trap designs in sampling cursorial spiders from tree trunks.  Journal of Arachnology, 36, 280-286

 

Post post script And for those of you who have had to suffer sitting through the Pokémon movie as I did many years ago, there is also a Pokémon version of the antlion! Pitfall Pokemon

http://bulbapedia.bulbagarden.net/wiki/Trapinch_(Pok%C3%A9mon)

 and don’t forget Winnie the Pooh and his heffalump trap 😉  Hopefully you will use them more carefully than he did. Pitfall trap - Heffalump

8 Comments

Filed under EntoNotes