Tag Archives: zoology

Does naming your study animals introduce observer bias?

I think, that most, if not all entomologists, will confess to a bit of funding envy when talking with those of their colleagues who work with the “undeserving 3%”, the large charismatic mega-fauna and the modern dinosaurs. The terminology gives us away, although the evidence is overwhelmingly on our side (Leather, 2009).  As entomologists, particularly those of us working in the field, we are used to reporting numbers collected in the tens of thousands (Ramsden et al., 2014 ), if not the hundreds of thousands (Missa et al., 2009) and  even a short six-week study can result in the capture of thousands of ground beetles (Fuller, et al., 2008).  Naming our subjects, much as we love them, is not an option, even if we wanted to. Even behavioural entomologists counting individual flower visits by pollinators are used to dealing with hundreds of individuals.   In the laboratory, although numbers may be smaller, say tens, we still assign them alphanumeric codes rather than names, even though one might look forward to counting the number of eggs laid by the unusually fecund moth #17 or hope that aphid #23 will be dead this morning as she is becoming a pesky outlier for your mortality data 🙂

Our colleagues who work with mammals in the field, seem however to adopt a different strategy. It appears quite common for them to name their animals as the following examples from Twitter make clear.

OB1

From her dissertation field note book, Erin Kane @Diana_monkey but not yet published.

Published data in McGraw et al., (2016) are from another study where the animals are not named.

OB2

Anthropomorphic judgement values

OB3

Anne being very involved with her cheetahs, although the paper (Hillborn et al., 2012) does not mention them by name.

 

OB4

Another example of subjects with names Hubel et al., 2016), but this time named in the paper.

OB5

Although in the description of methodology and results animals are referred to as subjects, the Table gives it away! (Allritz et al., 2016).

OB6

Another example of named subjects (Stoinski et al., 2003).

OB7

More named subjects (Dettmer & Fragaszy, 2000), but as these were captive the names almost certainly not chosen by the observers.

OB8

In this case (Blake et al., 2016), use no human-based names either in the methods or tables, so exemplary, although of course I have not seen their field note books 🙂

My concern, highlighted by these examples, is that by naming their study animals, the observers are anthropomorphising them and that this may lead them to inadvertently bias their observations. After all, the names have not been chosen at random, and thus could influence the behaviours noted (or ignored). I say ignored, because of two very specific examples, there are more, but I have these two to hand.

Victorians used birds as examples of good moral behaviour, erroneously believing them to be monogamous, probably because of seeing the way they fed their chicks cooperatively. Tim Birkhead (2000)* quotes the Reverend Frederick Morris who in 1853 preached  “Be thou like the dunnock – the male and female impeccably faithful to each other,”  and goes on to point out that despite a hundred years of ornithological science it was not until the late 1960s that  the promiscuous behaviour of female birds was revealed, interestingly enough coinciding with the new moral code of the 1960s.

Descriptions of penguin homosexual behaviour and their penchant for acts of necrophilia so shocked George Levick’s publishers that they removed them from his 1915 report but printed them and privately distributed them to selected parties marked as “Not for Publication” (Russell et al., 2012).  He also transcribed his descriptions of this ‘aberrant’ behaviour in Greek in his notebooks, presumably to make it less accessible.

And finally from me, this recent report about ‘sacred and ritualistic’ behaviour in chimpanzees Kuhl et al (2016),   where, I feel the authors have really allowed themselves to over-anthropomorphise with their subjects, very much to the detriment of scientific  detachment.  I have yet to find an entomologist who agrees with their interpretation. http://www.nature.com/articles/srep22219

AND NOW SOMETHING NEW for my blog, an embedded comment/riposte. I thought that it would be useful to get a response from someone who works on large charismatic mega-fauna and who names their subjects.  Anne Hilborn, whom many of you will know from Twitter as @AnneWHilborn, has kindly agreed to reply to my comments.  In the spirit of revealing any possible conflicts of interest I should say that I taught Anne when she was an Ecology MSc student at Silwood Park 🙂

Over to you Anne…..

“Hello, my name is Anne and I name my study animals.”

Decades ago this might have gotten me jeered out of science, the assumption being that by naming my study animals I was anthropomorphizing them and that any conclusions I drew about their behavior would be suspect. Thankfully we (at least those of us who have the privilege of working on megafauna) have moved on a bit in our thinking and our ways of doing science.

There are two parts to Simon’s concern about naming study animals. One is that naming leads to anthropomorphization, the second is that the anthropomorphizing leads to biased science. I would argue that the naming of study animals doesn’t necessarily increase anthropomorphism. On the Serengeti Cheetah Project we don’t name cheetahs until they are independent from their mother (due to a high mortality rate).  During my PhD fieldwork I spent a lot of time following a young male known as HON752MC (son of Strudel).  Several months after I started my work he was named Boke. My interest in his behavior, my chagrin at his failures and happiness when he had a full belly didn’t change when he was named. Many of us get emotionally attached on some level to our study animals, whether they have names or numbers.

An interesting thing to ponder is that if naming does lead to anthropomorphizing, does it only happen when human names are used? What human characteristics am I likely to attach to cheetahs named Peanut, Muscat, Strudel, Fusili, or Chickpea?

OB9

As to whether anthropomorphism leads to biased science… it definitely can if, as Simon points out, certain behaviors are not recorded because they do not fit the image of the animal the researcher had in their head. I don’t have any data on this, but I suspect this is extremely rare now days. Almost all researchers have had extensive formal training and know the importance of standardized data collection. I study cheetah hunting behavior, and I record how long a cheetahs spends spend stalking, chasing, killing, and eating their prey. I record the number of animals in the herd they targeted, how many second the cheetah spends eating vs being vigilant, and at what time they leave the carcass. No matter my personal feelings or attachments to an individual cheetah, the same data gets recorded.

Research methods have advanced a lot in the past decades and we use standardized methodologies and statistics expressly to prevent bias in our results. Anthropomorphism is just one possible source of bias, others include wanting to prove a treasured hypothesis, the tendency to place plots in areas where you suspect you will get the best results, etc..

As Adriana Lowe (@adriana_lowe ) puts it “Basically, if you’ve got a good study design and do appropriate stats, you can romanticise the furry little buggers until the cows come home and it won’t have a massive effect on your work. Any over interpretation of results would get called out by reviewers when you try to publish anyway.”

Simon points out examples of people being shocked when birds didn’t follow the dictates of contemporary human morality. I would like to think that biologists no longer place human values on animals. I can admire hyenas because the females are bigger bodied and socially dominant to males, but that doesn’t mean I draw parallels or lessons from them to human society (not in the least because the females give birth through their elongated clitoris and the cubs practice siblicide). As scientists we are capable of compartmentalizing, of caring deeply for our subjects, of shedding a tear when Asti turns up with one cub when previously she had five, without that changing the way we record data. In our training as biologists, we are taught not impose our own feelings or values on our study animals. We may find infanticide in lions (Packer and Pusey 1983), extra pair copulations in birds and primates (Sheldon 1994, Reichard 1995), or siblicide in boobies (Anderson 1990) to be repugnant, but we record, analyze, and try to publish on the phenomenon all the same.

To go on the offensive, there are ways naming study animals actually improves data collection.

Again, Adriana Lowe “If you’re doing scan sampling for instance, so writing down all individuals in a certain area every 10 minutes or so, names help. At least for me, it’s harder to remember if someone is M1 or M2 than Janet or Bob, particularly if you have a big study troop/community. So it can improve the quality of the data collected if you’re less likely to make identification errors.”

Because of our own training and peer review, assigning emotions or speculating about the intent on animals rarely makes it into scientific papers. However the situation is very different for those of us who wish to present our results outside of the ivory tower. While fellow scientists might be willing to wade through dry descriptions about how M43 contact called 3 times in 4 minutes when he was no longer in visual contact with M44, the public is not. Effective science communication needs a story and an emotional hook to draw people in. It is much easier to do that when you tell a story about Bradley and Cooper and not M43 and M44.  I will admit this does get into grey areas with the type of language we use outside of scientific papers. I tell stories about the cheetahs in my blog posts and even assign emotions to individuals. But if I am answering questions from the media or the public, I am still very careful not to make any definitive claims about behavior that haven’t been backed up by statistical analysis.

OB10

Here I use language and make assumption in tweets that I never would in a scientific paper.

OB11

There are a lot of issues that negatively affect the objectivity of science ie. the majority of funding going to well established entrenched researchers, papers being reviewed primarily by people from the same school of thought, the increasing pressure to have flashy results that generate headlines, but naming of study animals is not high on the list.

——————————————————————————————————————–

So now, over to you the readers, what do you think? Please comment and share your views or at the very least, please cast your vote.

VOTE NOW

 

 

References

Allritz, M., Call, J. & Borkenau, P. (2016) How chimpanzees (Pan troglodytes) perform in a modified emotional Stroop task. Animal Cognition, 19, 435-449.

Anderson, D. J. (1990) Evolution of obligate siblicide in Boobies. 1. A test of the insurance-egg hypothesis. American Naturalist, 135, 334–350.

Birkhead, T. (2000) Promiscuity: An Evolutionary History of Sperm Competition and Sexual Conflict. Faber, London.

Blake, J.G., Mosquera, D., Loiselle, B.A., Swing, K., Guerra, J. & Romo, D. (2016) Spatial and temporal activity patterns of ocelots Leopardus pardalis in lowland forest of eastern Ecuador.  Journal of Mammalogy, 97, 455-463.

Dettmer, E., and Fragaszy, D. 2000. Determining the value of social companionship to captive tufted capuchin monkeys (Cebus apella). Journal of Applied Animal Welfare Science, 3, 293-304

Fuller, R. J., Oliver, T. H. & Leather, S. R. (2008). Forest management effects on carabid beetle communities in coniferous and broadleaved forests: implications for conservation. Insect Conservation & Diversity 1, 242-252.

Hillborn, A., Pettorelli, N., Orme, C.D.L. & Durant, S.M. (2012) Stalk and chase: how hunt stages affect hunting success in Serengeti cheetah. Animal Behaviour, 84, 701-706

Hubel, T.Y., Myatt, J.P., Jordan, N.R., Dewhirst, O.P., McNutt, J.W. & Wilson, A.M. (2016) Energy cost and return for hunting in African wild dogs and cheetahs. Nature Communications, 7, 11034 DOI:doi:10.1038/ncomms11034

Kühl, H.S., Kalan, A.K., Arandjelovic, M., Aubert, F., D’Auvergne, L., Goedmakers, A., Jones, S., Kehoe, L., Regnaut, S., Tickle, A., Ton, E., van Schijndel, J., Abwe, E.E., Angedakin, S., Agbor, A., Ayimisin, E.A., Bailey, E., Bessone, M., Bonnet, M., Brazolla, G., Buh, V.E., Chancellor, R., Cipoletta, C., Cohen, H., Corogenes, K., Coupland, C., Curran, B., Deschner, T., Dierks, K., Dieguez, P., Dilambaka, E., Diotoh, O., Dowd, D., Dunn, A., Eshuis, H., Fernandez, R., Ginath, Y., Hart, J., Hedwig, D., Ter Heegde, M., Hicks, T.C., Imong, I., Jeffery, K.J., Junker, J., Kadam, P., Kambi, M., Kienast, I., Kujirakwinja, D., Langergraber, K., Lapeyre, V., Lapuente, J., Lee, K., Leinert, V., Meier, A., Maretti, G., Marrocoli, S., Mbi, T.J., Mihindou, V., Moebius, Y., Morgan, D., Morgan, B., Mulindahabi, F., Murai, M., Niyigabae, P., Normand, E., Ntare, N., Ormsby, L.J., Piel, A., Pruetz, J., Rundus, A., Sanz, C., Sommer, V., Stewart, F., Tagg, N., Vanleeuwe, H., Vergnes, V., Willie, J., Wittig, R.M., Zuberbuehler, K., & Boesch, C. Chimpanzee accumulative stone throwing. Scientific Reports, 6, 22219.

Leather, S. R. (2009). Taxonomic chauvinism threatens the future of entomology. Biologist, 56, 10-13.

McGraw, W.S., van Casteren, A., Kane, E., Geissler, E., Burrows, B. & Dsaegling, D.J. (2016) Feeding and oral processing behaviors of two colobine monkeys in Tai Forest, Ivory Coast.  Journal of Human Evolution, in press.

Missa, O., Basset, Y., Alonso, A., Miller, S.E., Curletti, G., M., D.M., Eardley, C., Mansell, M.W., & Wagner, T. (2009) Monitoring arthropods in a tropical landscape: relative effects of sampling methods and habitat types on trap catches. Journal of Insect Conservation, 13, 103-118.

Packer, C. & Pusey, A.E. (1983) Adaptations of female lions to infanticide by incoming males. American Naturalist, 121, 716–728.

Ramsden, M.W., Menéndez, R., Leather, S.R., & Wakkers, F. (2014) Optimizing field margins for biocontrol services: the relative roles of aphid abundance, annual floral resource, and overwinter habitat in enhancing aphid natural enemies. Agriculture Ecosystems and Environment, 199, 94-104.

Reichard, U. (1995) Extra-pair copulations in a monogamous gibbon (Hylobates lar). Ethology ,100, 99–112.

Russell, D.G.D., Sladen, W.J.L. & Ainley, D.G. (2012) Dr. George Murray Levick (1876-1956): unpublished notes on the sexual habits of the Adélie penguin.  Polar Record, 48, 387-393

Sheldon, B. C. (1994) Male phenotype, fertility, and the pursuit of extra pair copulations by female birds. Proceedings of the Royal Society B: Biological Sciences, 257, 25–30.

Stoinski, T.S., Hoff, M.P. & Maple, T.L. (2003) Proximity patterns of female western lowland gorillas (Gorilla gorilla gorilla) during the six months after parturition. American Journal of Primatology, 61, 61-72.

 

Post script

I said that entomologists don’t name their study animals but they do name their pets. Some of our PhD students had an African flower

OB12

Soulcleaver; despite his name he seems quite cute when viewed side-on, perhaps even with a cheeky grin, although as an entomologist I couldn’t possibly say that 🙂

beetle, Mecynorhina ugandiensis, which they named Soulcleaver, and I know that some beekeepers name their Queens https://missapismellifera.com/2016/03/17/the-decay-of-spring/

 

*note that Tim Birkhead also falls into the very trap that he describes by using the word promiscuous in the title of his book, a human judgemental term relating to moral behaviour, multiple mating would have been more appropriate.

 

 

 

12 Comments

Filed under Bugbears, Science writing, Uncategorized

Are we too late to save Natural History? The demise of Natural History training in schools and universities

For some years now I have sounded off about my concerns over the loss of entomological expertise and teaching (Leather, 2007, 2009ab). My former colleague Donald Quicke and I have also written about the demise of natural history teaching in secondary and tertiary education (Leather & Quicke, 2009, 2010). More recently, I have been following a debate on Ecolog about the lack of field-based natural history teaching in the USA, with many contributors lamenting the decline of teaching in this area due to the over-emphasis placed on teaching molecular biology and allied subjects. Interestingly enough, at about the same time, Jeremy Fox addressed a similar issue about natural history knowledge in academic ecologists and concluded that there was not as much of a problem as many people thought  http://dynamicecology.wordpress.com/2014/01/28/stats-vs-scouts-polls-vs-pundits-and-ecology-vs-natural-history/

Terry McGlynn http://smallpondscience.com/2014/02/03/natural-history-is-important-but-not-perceived-as-an-academic-job-skill/ however, is much less sanguine and perceives a real problem with not just the teaching of the subject, but of the willingness of students to engage with those courses still available.

In the UK the decline in teaching whole organism biology in general at secondary school and undergraduate level has become ever more pronounced. Biology teaching at research intensive university has become increasingly cell and molecular biased as whole organism biologists retire and are replaced by cell and molecular biologists publishing in ‘high impact’ journals; the needs of teaching are perceived as secondary, research profiles are seen as more important. As a consequence, many biology degrees in the UK lack balance, and content is largely dependent on what those staff still willing to teach, are able to offer. We thus have zoology degrees where whole organisms are largely absent and the invertebrates are covered in perhaps as few as twelve lectures. We also see ecology degrees lacking physiology; how can you understand an ecosystem if you don’t know how the constituent parts work?

I have not been alone in bemoaning the status of natural history knowledge and training; in 2005, Anne Bebbington of the Field Studies Council wrote

At secondary level the decrease in the importance of whole organism biology in the curriculum, declining opportunities for fieldwork and the concentration of A-level fieldwork on techniques and course assessment allow little time for training in identification skills. Many A-level students feel that being able to recognise and name organisms is not important. In teaching students to be responsible citizens and to care about their environment, a knowledge of at least the common organisms around them is vital. Initiatives are needed to engage the interest of primary school children and to provide more opportunities for fieldwork at secondary level, including time to teach students to recognise organisms. Training for teachers would be valuable and the role of organisations outside formal education in educating the wider public is also recognised.”

Five years later, Donald Quicke and I (Leather & Quicke, 2010) wrote “The great majority of those now studying for degrees in biology have had virtually no training or experience in identifying organisms, and sadly, the drive towards ever more molecular and hands-off meta-analysis type study in universities is exacerbating the situation. Although students may be enthused on a two-week long field course and get to learn to recognise a few major groups or species, without back-up, just as with use of statistics, for example, this will have little, if any, long term retention in their skill set.”

We are now almost five years on from these words and worryingly, things, despite all the citizen science activities that seem to spring up every week and the popularity of natural history apps and programmes like Springwatch, have actually got worse and not just in the UK (Tewksbury et al., 2014)*.

The problem we face is that although there are still many people interested in natural history per se, there is a declining number of opportunities for people to be academically trained in the disciplines associated with its study. Thus fewer biology teachers with these skills are employed and opportunities for enhancing (or subverting as some might see it) the rigid school curriculum at present enforced in secondary schools are becoming fewer too. The good work done in some primary schools by dedicated teachers and outreach specialists such as Minibeast Mayhem are not reinforced at secondary school and thus fewer students want to go on to pursue such studies, or are even aware that such study is possible. At undergraduate level, we find very little whole organism teaching in both the field and laboratory. How many zoology degrees in the UK now expose their students to functional morphology; for example, examining and drawing skulls in able to understand the evolution of reptilian jaw bones to mammalian auditory bones; something that even I, as an invertebrate zoologist, was ‘forced’ to do? I was pleasantly surprised during my recent visit to University College Dublin as the external examiner for their BSc Zoology degree, to find that at least some zoology courses do still retain many of the essential whole organism elements required to fully understand animal form and function.

What are we doing about these lost skills? The UK Plant Sciences Federation recently (January 2014) released a detailed report where they highlighted areas where the UK is desperately short of expertise and training; much to my gratification this included entomology as a key subject area 😉 They have, since the release of this report, set up a number of working groups, one of which, Training and Skills, I have agreed to chair. Our first meeting is in July and we will report back at the end of September, hopefully with some concrete and workable suggestions. The Field Studies Council, as you might expect, are also very much concerned about the situation and thanks to a recent grant from the Esmée Fairbairn Foundation have been able to initiate a programme called Tomorrow’s Biodiversity which has the aim of facilitating the recording of biodiversity by getting more people trained in identification skills, particularly in the less well-known taxa.

The problem as I see it, lies in the lack of formal natural history training and teaching at undergraduate level. This has been brought about by the failure of university departments to understand the importance of whole organism biology and a tendency to recruit staff according to the funding fashion of the moment, rather than considering the big picture and recruiting across the specialities. We need to balance the teaching and research staff within our university departments so that we produce a viable population of graduate whole organism biologists, be they zoologists, botanists, or ecologists, who are able to recognise the plants and animals that surround them and not just a few ‘model organisms’ and also to understand how they function within that environment. We also need to look seriously at our pre-university biology teaching and increase the amount of whole organism and field content in both pre- and post-16 teaching. There are many opportunities to do this even in genetics. For example in ‘O’ Level Biology our teacher took us outside to search for and collect the snail Cepea nemoralis, famous for its variation in shell colour which is genetically controlled and which is selected for by the degree of predation that populations in different environments suffer from thrushes (Cain & Sheppard, 1954).  There are many such opportunities but only if the teachers know about them and are willing and able to take them.

Pink Cepaea_nemoralis

http://commons.wikimedia.org/wiki/File:Cepaea_nemoralis.jpg

  Yellow Cepaea_nemoralis_(Linnaeus_1758)

      http://de.wikipedia.org/wiki/Hain-B%C3%A4nderschnecke#mediaviewer/Datei:Cepaea_nemoralis_(Linnaeus_1758).jpg

An afternoon outside taught us genetics, ecology and plenty of natural history. I feel privileged and thankful that I was able to spend so much of my childhood outside in the natural

Simon Jamaica c 1963

world and hope that we can at least give the current generation of young people the opportunity to enjoy and understand the importance of the natural world around them before it is too late.

References

Bebbington, A. (2005) The ability of A-level students to name plants. Journal of Biological Education 39: 63-67. http://www.tandfonline.com/doi/abs/10.1080/00219266.2005.9655963#.U5g5MFRwa70

Cain, A.J. & Sheppard, P.M. (1954) Natural selection in Cepaea. Genetics, 39, 89-116 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1209639/

Leather, S. R. (2007). British entomology in terminal decline? Antenna 31: 192-193.

Leather, S. R. (2009a). Taxonomic chauvinism threatens the future of entomology. Biologist 56: 10-13. http://cdn.harper-adams.ac.uk/document/profile/Leather_Biologist_2009.pdf

Leather, S. R. (2009b). Institutional vertebratism threatens UK food security. Trends in Ecology & Evolution 24: 413-414. http://cdn.harper-adams.ac.uk/document/profile/Leather_2009_Trends-in-Ecology-&-Evolution.pdf

Leather, S. R. & Quicke, D. L. J. (2009). Where would Darwin have been without taxonomy? Journal of Biological Education 43: 51-52. http://cdn.harper-adams.ac.uk/document/profile/Leather_&_Quicke_2009_JBE.pdf

Leather, S. R. & Quicke, D. L. J. (2010). Do shifting baselines in natural history knowledge threaten the environment? Environmentalist 30: 1-2. http://cdn.harper-adams.ac.uk/document/profile/Leather_&_Quicke_2010.pdf

Tewksbury, J.J. et al. (2014) Natural History’s place in science and society. Bioscience 64: 300-310 http://bioscience.oxfordjournals.org/content/64/4/300

*Slightly tongue in cheek, I must point out that the authors failed to cite any of my papers concerning the decline of natural history teaching 😉

 

9 Comments

Filed under Bugbears, Teaching matters, Uncategorized