Tag Archives: crowding

Not all aphids take the same risks

In 1970 an entomologist working on the black bean aphid, Aphis fabae, at Rothamsted Experimental Station (as it then was),  noted that he could categorise the winged individuals as either migrants, flyers or non-flyers; the former flying before they reproduced, the second flying after they reproduced and the final category, never flying (Shaw, 1970).  To describe this phenomenon he used the phrase “migratory urge” a term previously only used in the ornithological literature.

A few years later a group of PhD students in Tony Dixon’s lab at the University of East Anglia started dissecting aphids and counting their ovarioles, finding that unlike most other insects, ovariole number was variable within a species and not related to adult weight (Dixon & Dharma, 1980; Wellings et al., 1980; Leather, 1983).  Generally speaking, in insects, including aphids, the heavier they are, the more fecund they are, although in some instances this is not always true (Leather, 1988).

Ovarioles Fig 1

Figure 1 taken from http://www.aphidsonworldsplants.info/Cloning_Experts_3.htm

Ovarioles Fig 2

Figure 2 What aphid ovarioles really look like Dombrovsky  et al. BMC Research Notes 2009 2:185   doi:10.1186/1756-0500-2-185

What we found then (Wellings et al., 1980), and later (Leather et al., 1988), was that aphids with wings (alatae) even those from the same clone, had much more variability in the number of ovarioles contained within them than those without wings (apterae) (Leather et al., 1988), and that the more ovarioles an aphid contained the more fecund it was, although as mentioned earlier the number of ovarioles appeared to be independent of weight (Leather & Wellings, 1981).

So what does this have to do with migratory urge in Aphis fabae? In the early 1980s Keith Walters was working on migration in cereal aphids (Sitobion avenae and Rhopalosiphum padi) and discovered, that as with Aphis fabae these two species also produced alatae with different flight attributes (Walters & Dixon, 1983).  Building on what we in our group had discovered about ovarioles, Keith was able to show that the degree of migratory urge in aphids was determined by the number of ovarioles they contained. The greater the number of ovarioles the more reluctant they were to take flight (Figure 3ab).

Ovarioles Fig 3a

Figure 3a Relationship between number of ovarioles and time to take-off (minutes) in Sitobion avenae  (Drawn from data in Walters & Dixon, 1983).

Ovarioles Fig 3b

Figure 3b Relationship between number of ovarioles and time to take-off (minutes) in Rhopaloisphum padi  (Drawn from data in Walters & Dixon, 1983).

 He also found that the fewer the number of ovarioles, the steeper the angle of take-off was (Figure 4) i.e. aphids with few ovarioles climbed faster and more steeply and were thus more likely to end  up higher in the air, and thus more likely to travel further than those

Ovarioles Fig 4

Figure 4 Relationship between number of ovarioles and angle of take-off (degrees) in Rhopalosiphum padi (drawn from data in Walters & Dixon, 1983).

taking off at a shallower angle.  He also showed that resistance to starvation was greater in those aphids with fewer ovarioles and that they could also fly for longer periods of time.  Given that alatae of Aphis fabae also have a variable number of ovarioles, 6-12 (Leather et al., 1988), we can see that this fits in very well with Shaw’s classification of migrants, flyers and non-flyers.

This is yet another great example of the flexibility (plasticity) of the aphid clone.  By producing offspring that have different flight capabilities and propensities, the clone is able to hedge its bets in times of adversity; alate aphids in many aphid species are produced in response to crowding and/or poor nutritional quality (Dixon, 1973).  This deterioration in living conditions could be very local i.e. restricted to the plant on which the aphid is feeding or its immediate neighbours, slightly more widespread, i.e. at a field scale or at a much more widespread landscape scale.  Given that long distance aphid migration is very costly (only a tiny proportion survive, Ward et al, 1998) the best option is to spread the risk between the members of your clone.  Those individuals with more ovarioles and greater potential fecundity make the low risk short-distance hops (trivial flights), but take the chance that the next door plant might be just as bad as the one left behind and also within easy reach of natural enemies, but with a higher chance of arriving and reproducing.

Ovarioles Fig 5

A risk taking aphid!


At the other end of the scale, those clone members with fewer ovarioles and reduced potential fecundity make the long distance migratory flights, with the risk of not finding a suitable host plant in time, but with the chance that if they do, it will be highly nutritious and natural enemy-free.  A really good example of not putting all your eggs in one basket and yet again a demonstration of what fantastic insects aphids are 😉



Dixon, A.F.G. (1973) Biology of Aphids Edward Arnold, London.

Dixon, A.F.G. & Dharma, T.R. (1980) Number of ovarioles and fecundity in the black bean aphid, Aphis fabae. Entomologia Experimentalis et Applicata, 28, 1-14.

Leather, S.R. (1983) Evidence of ovulation after adult moult in the bird cherry-oat aphid, Rhopalosiphum padi. Entomologia experimentalis et applicata, 33, 348-349.

Leather, S. R. (1988). Size, reproductive potential and fecundity in insects: Things aren’t as simple as they seem. Oikos 51: 386-389.

Leather, S.R. & Welllings, P.W. (1981) Ovariole number and fecundity in aphids. Entomologia experimentalis et applicata, 30, 128-133.

Leather, S.R., Wellings, P.W., & Walters, K.F.A. (1988) Variation in ovariole number within the Aphidoidea. Journal of Natural History, 22, 381-393.

Shaw, M.J.P. (1970) Effects of population density on the alienicolae of Aphis fabae Scop.II The effects of crowding on the expression of migratory urge among alatae in the laboratory. Annals of Applied Biology, 65, 197-203.

Walters, K.F.A. & Dixon, A.F.G. (1983) Migratory urge and reproductive investment in aphids: variation within clones. Oecologia, 58, 70-75.

Ward, S.A., Leather, S.R., Pickup, J., & Harrington, R. (1998) Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts? Journal of Animal Ecology, 67, 763-773.

Wellings, P.W., Leather , S.R., & Dixon, A.F.G. (1980) Seasonal variation in reproductive potential: a programmed feature of aphid life cycles. Journal of Animal Ecology, 49, 975-985.




Filed under Aphidology, Aphids

Not all aphids aggregate in clumps

There is a tendency for people when they do think of aphids, to see them as existing in large unsightly aggregations, oozing sticky honeydew, surrounded by their shed skins and living in positively slum-like conditions. The bird cherry-oat aphid, Rhopalosiphum padi, the black bean aphid, Aphis fabae, the Poa-feeding aphid, Utamphorophora humboldti and the beech wooly aphid, Phyllaphis fagi, being notable examples.

       Damage on bird cherry             Aphids on runner beans 2014           Office aphids compressed           Beech aphid

Whilst this may be true for many pest aphid species, it is far from true for the group as a whole. Yes they may occur in aggregations, but quite often, they look very neat and tidy and well-behaved.

Conker aphids 2013     Aphids on heath

Some aphid species lead quite solitary lives and you often only find them in ones and twos, if at all, e.g. Monaphis antennata.  There is one aphid species, however, that manages to have it both ways, living surrounded by its friends and relatives but managing to exist in splendid isolation at the same time. The exemplar of this phenomenon is the sycamore aphid, Drepanosiphum platanoidis, which exhibits a behaviour termed ‘spaced-out gregariousness’, a term coined by John Kennedy and colleagues in 1967, although the phenomenon was

sycamore aphids on leaf

described and measured by Tony Dixon a few years earlier. Effectively, the aphids like to be in a crowd but to have their own personal space. As proof of this, when the numbers of aphids on a leaf are low, say two to three, they will, instead of spreading out across the leaf, still show the same behaviour, i.e. get to within 2-3 millimetres distance of each other.

Sycamore compressed

Even more extraordinary is when a predator such as a ladybird or lacewing larvae finds its way on to a crowded leaf; the sycamore aphids do a great imitation of the parting of the Red Sea, but still without touching each other and keeping their regulation distance apart. Those finding themselves at the edge, either take wing or move to the upper surface of the leaf. Although a video of this exists somewhere I have been unable to find it so you will have to take my word for it. If anyone does come across the footage please let me know.

Yet another reason to love aphids.



Dixon, A.F.G. (1963) Reproductive activity of the sycamore aphid, Drepanosiphum platanoides (Schr) (Hemiptera, Aphididae). Journal of Animal Ecology, 32, 33-48.

Kennedy, J.S., Crawley, L., & McLaren, A.D. (1967) Spaced-out gregariousness in sycamore aphids Drepanosiphum platanoides (Schrank) (Hemiptera, Callaphididae). Journal of Animal Ecology, 36, 147-170.

Post script 

You may have noticed that the two references cited spell the species name of the sycamore aphid as platanoides,  It is in fact correctly spelt platanoidis.  To their embarrassment both John Kennedy and Tony Dixon got it wrong.  It wasn’t until 1978, when a very brave (possibly helped by conference alcohol consumption) PhD student (David Mercer) of Tony Dixon’s pointed this out, that the error was noticed and corrected 😉


Mercer, D.R. (1979) Flight Behaviour of the Sycamore Aphid, Drepanosiphum platanoidis Schr.   Ph.D Thesis, University of East Anglia, Norwich, UK.



Filed under Aphidology, Aphids