Category Archives: EntoNotes

Sloth Moths – moving faster than their hosts

One of the minor downsides of our Biology and Taxonomy of Insects module on the MSc course is, that we do have to review a lot of families within some of the groups, Lepidoptera being a prime example.  Current estimates range from 250 000 to 500 000 species in 124 families (Kristensen et al., 2007). Going through the basic biology of each family can be pretty dry stuff, even if I have a personal anecdote or two to help lighten information overload.  I am, for example, able to wax lyrical for several minutes about small ermine moths and their incredible silk-production activities, but even after more than 40 years of playing around with insects I don’t have a personal story for every family of Lepidoptera 🙂 so I am always on the lookout for an extra interesting or mind-blowing fact to help leaven the student’s knowledge diet.

Imagine my delight then when I came across a clip* from a BBC One Wildlife programme, Ingenious Animals, describing an obligate association between sloths and moths and not just because of the rhyming opportunity** 🙂

Sloth with moths – BBC One Ingenious Animals

The earliest record of a moth associated with a sloth that I have been able to find is in 1877 (Westwood, 1877) which merely records that the unidentified moth was “parasitic on the three-toed sloth”. In 1908 a Mr August Busck on a visit to Panama saw a two-toed sloth, Choloepus hoffmanni fall from a tree and noticed several moths flying out of the sloth’s fur.  He caught these and on his return to the United States presented them to Dr Harrison Dyar (Dyar, 1908a).  If the name seems familiar to you that is because Harrison Dyar is better known in connection with Dyar’s Law, the observation that larval growth in arthropods is predictable and follows a geometric progression (Dyar, 1890). The moths were identified by Dyar as a new species which he named Cryptoses choloepi.  Dyar hypothesised that the moths and their larvae lived in the fur of the sloth and it was this that caused the sloth’s matted hair.

Cryptoses choloepi (Lepidoptera, Chrysauginae)

http://nmnh.typepad.com/department_of_entomology/2014/03/sloths-moths-and-algae-whos-eating-whom.html

Shortly after publishing the first note Dyar came across two more moth specimens, this time collected from a sloth in Costa Rica.  He felt that these were another species, possibly Bradipodicola hahneli (Dyar, 1908b).  The next mention of a sloth moth that I could fine is in a marvellously titled paper (Tate, 1931) who refers to a moth shot in western Ecuador whose fur was “literally alive with a small species of moth, whose larvae possibly fed on the greenish algae which grew in the hair”.  The idea that sloth moths fed on the fur of living sloths was further reinforced by Brues (1936) although this was not based on any personal observations.  It was only in 1976 that it was discovered that the larvae of the sloth moth Cryptoses choloepi were actually coprophagous (Waage & Montgomery, 1976), the female moths waiting for the three-toes sloth B. infuscatus to descend from the trees to relive their bowels, which they do about once a week.  As an aside, I have known Jeff Waage for many years in his role as a biological control expert but until I discovered this paper about a month ago, had no idea that he had ever spent time inspecting sloth faeces 🙂  Jeff and his co-author Gene Montgomery, described the association between the moths and the sloths as phoretic, rather than parasitic, as they saw no harm being caused to the sloths, but a number of benefits accruing to the moths, namely oviposition-site location being simplified, the fur of the sloth acting as refuge from avian predators and diet enhancement from sloth secretions (Waage, 1980).  It turns out however, that some species of sloth moth do spend their whole life cycle on the sloth, B. hahneli lose their wings once a sloth host is found and their eggs are laid in the fur of the sloth (Greenfield, 1981).  The algae that these moths presumably feed on is considered to be in a symbiotic association with the sloths, providing camouflage and possibly nutrition in the form of trace elements (Gilmore et al., 2001).  Hereby lies a tale.  The two-toed sloths have a much wider diet and home range than three-toed sloths and also defecate from the trees, unlike the three-toed sloths which have a very narrow diet (entirely leaves) and narrow home ranges, yet descend from the relative safety of the forest canopy to defecate, albeit only once a week, but still a risky undertaking (Pauli et al., 2017).  Rather than a phoretic relationship Pauli and colleagues see the relationship between sloths, algae and moths as a three-way mutualism, beautifully summarised in their Figure 3.

Postulated linked mutualisms (þ) among sloths, moths and algae: (a) sloths descend their tree to defecate, and deliver gravid female sloth moths (þ) to oviposition sites in their dung; (b) larval moths are copraphagous and as adults seek sloths in the canopy; (c) moths represent portals for nutrients, and via decomposition and mineralization by detritivores increase inorganic nitrogen levels in sloth fur, which fuels algal (þ) growth, and (d ) sloths (þ) then consume these algae-gardens, presumably to augment their limited diet. This figure brazenly ‘borrowed’ from Pauli et al. 2014).

The sloths take the risk of increased predation by descending to ground level, because by helping the moths they improve their own nutrition and hence their fitness.  Yet another great example of the wonders of the natural world.

 

Post script

Although not as exotic as the sloth moth, we in the UK can also lay claim to a coprophagous moth, Aglossa pinguinalis, the Large Tabby which feeds on, among other things, sheep dung.  In Spain it is recorded as a cave dweller feeding almost entirely on animal dung, apparently not being too fussy as to the source.

 

References

Bradley, J.D. (1982) Two new species of moths (Lepidoptera, Pyralidae, Chrysauginae) associated with the three-toed sloth (Bradypus spp.) in South America.  Acta Amazonica, 12, 649-656.

Brues, C.T. (1936) Aberrant feeding behaviour among insects and its bearing on the development of specialized food habits.  Quarterly Review of Biology, 11, 305-319.

Dyar, H.G. (1890) The number of molts of lepidopterous larvae. Psyche, 5, 420–422.

Dyar, H.G. (1908a) A pyralid inhabiting the fur of the living sloth.  Proceedings of the Entomological Society of Washington, 9, 169-170.

Dyar, H.H. (1908b) A further note on the sloth moth. Proceedings of the Entomological Society of Washington, 10, 81-82.

Dyar, H.G. (1912) More about the sloth moth. Proceedings of the Entomological Society of Washington, 14, 142-144.

Gilmore, D.PP., Da Costa, C.P. & Duarte, D.P.F. (2001) Sloth biology: an update on their physiological ecology, behaviour and role as vectors of arthropods and arboviruses.  Brazilian Journal of Medical and Biological Research, 34, 9-25.

Greenfield, M.D. (1981) Moth sex pheromones: an evolutionary perspective.  The Florida Entomologist, 64, 4-17.

Kristensen, N., Scoble, M.J. & Karsholt, O. (2007)  Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity.  Zootaxa, 1668, 699-747.

Pauli, J.N., Mendoza, J.E., Steffan, S.A., Carey, C.C., Weimer, P.J. & Peery, M.Z. (2014) A syndrome of mutualism reinfocrs the lifestyle of a sloth.  Proceedings of the Royal Society B, 281, 20133006. http://dx.doi.org/10.1098/rspb.2013.3006.

Pinero, F.S. & Lopez, F.J.P. (1998) Coprophagy in Lepidoptera: observational and experimental evidence in the pyralid moth Aglossa pinguinalisJournal of Zoology London, 244, 357-362.

Tate, G.H.H. (1931) Random observations on habits of South American mammals.  Journal of Mammalogy, 12, 248-256.

Waage, J.K. (1980) Sloth moths and other zoophilous Lepidoptera.  Proceedings of the British Entomological and Natural History Society, 13, 73-74.

Waage, J.K. & Montgomery, G.G. (1976) Crytopses choloepi: a coprophagous moth that lives on a sloth.  Science, 193, 157-158.

Westwood, J.O. (1877) XXVIII. Entomological Notes.  Transactions of the Entomological Society, 25, 431-439.

 

*For the clip about the sloth moth see here http://www.bbc.co.uk/programmes/p04840xn

**Now, when I see a sloth,

My first thought is for the moth,

That has to make that desperate jump

When the sloth decides to take a dump!

 

 

3 Comments

Filed under EntoNotes, Uncategorized

Ladybird, ladybug or Alder warbler

Insects with common names are usually those that are notable in some way, be that because they are causing us harm or are beautiful, brightly coloured and give us joy.  Vernacular names for agricultural pest insects usually refer to the crop they are harming, such as the grain aphid, the apple moth, the large pine weevil.  For non-pests however, names appear more arbitrary.  One of the most well-known and loved insect, is the ladybird, or if you are from North America, the ladybug.  These are not, however, the only names that these useful animals have acquired since they first attracted human attention.  They have, over the centuries, acquired a wonderful variety of names around the world.o start with, you may well ask why they have the prefix lady.  In England they were originally called “Our Lady’s bird”.  Leaving aside the mystery of why they were called birds, the first part of the name referred to the fact that the most commonly noticed ladybirds are red (albeit with white or black spots), and in the Middle ages images of the Virgin Mary usually showed her in a red dress.  Another linkage to the Virgin Mary is that the most commonly seen ladybird is the seven spot ladybird (Coccinella septempunctata), and this was associated with the Seven Joys and the Seven Sorrows of Mary.

 

The association with Mary is also seen in Spanish, mariquita, meaning little Mary and in German Marienkäfer, Mary’s beetle.  The reference to the colour red is reflected in the fact that ladybirds belong to the family Coccinellidae which comes from the Latin for scarlet, coccineus, see also cochineal.

Other languages also make reference to the Virgin Mary, in Bosnian, as in German, they are called Mary’s beetle, bubamara.  The Basuques, as far as I can make out with the help of Google Translate, refer to them as Mary’s yolk, marigorringoa. The religious association is also seen in Dutch, lieveheersbeestje which means  the Lord’s sweet little creature.  The Russians call ladybirds Божья коровка [bozhya korovka] which translates to God’s little cow. Lithuanians have two names for ladybirds, Dievo karvytė  God’s cow  but also call them boružė .  The Welsh have lost the religious reference and instead refer to ladybirds as red cows, buwch goch gota. The Greeks make a religious link with a reference to Easter, pashalitsa (Easter is Pasha), but also refer to it as “kind of beetle with fine plumage (feathers)”, είδος κάνθαρου με ωραία πτερά.  The Portuguese have opted for joaninha (ninha means baby), whereas the Slovenians and Slovaks have homed in on the spots, ladybird being pikapolonica (pika is dot) and slunéčko sedmitečné  (sedmit is seven) respectively. The Bulgarians call them калинка (kalinka) but the Finns take the prize for the most obscure name, with Leppäkerttu, which literally translated means alder warbler 🙂

It seems apposite, that as in Finnish they apparently sing,  I should include these two rhymes; one that most of us have come across in some form or other

 

and one from Sweden that will probably be less familiar to English speakers, but which similarly exhorts the ladybird to fly away and at the same time introduces yet another feathered name for the ladybird.

Guld-höna, guld-ko!
Flyg öster, flyg vester,
Dit du flyger der bor din älskade!

Gold-hen, gold-cow!
Fly east, fly west,
You’ll fly to where your sweetheart lives.

 

A gold cow with wings – Kamadhenu  a wish-fulfilling Hindu goddess

In Hindi, ladybirds are called sonapankhi, or golden wings and are associated with passing or failing exams, depending on whether it stays on your hand long enough for you to count the spots or not.

And finally, to prove that not all verse about ladybirds is doggerel, this poem by the poet Clive Sansom captures both the beauty and fragility of nature.

The Ladybird

Tiniest of turtles!
Your shining back
Is a shell of orange
With spots of black.

How trustingly you walk
Across this land
Of hairgrass and hollows
That is my hand.

Your small wire legs,
So frail, so thin,
Their touch is swansdown
Upon my skin.

There! break out
Your wings and fly:
No tenderer creature
Beneath the sky.

3 Comments

Filed under EntoNotes, Uncategorized

The Verrall Supper 2017 – entomologists eating, drinking and getting very merry

The Rembrandt Hotel in South Kensington and the first Wednesday of March mean only one thing to many UK entomologists – the Verrall Supper. I have written about the Verrall Supper previously on more than one occasion, so this will, once again, be largely a photographic record.  This year the first Wednesday of March was March 1st and this seemed to have caught a few Verrallers by surprise.  Consequently, numbers were slightly down compared with last year’s record, but the number of non-attending Verrallers paying to retain their membership was at an all-time high.  One notable absence was the former Verrall Secretary, Helmut van Emden who due to mobility problems was unable to attend, only the second one that he has missed in 50 years!

On a very sad note, we reported the deaths of two long-time members of the Association, Gerry Tremewan (long time editor of The Entomologist and the Entomologist’s Gazette, and Bernard Skinner, author of that magnificent book,  Moths of the British Isles.

More positively, we were slightly up on female entomologist this year, 30% compared with last year’s 29%.  There is still much progress to be made, but we have seen a year on year increase now for the last four years so, perhaps one day we will hit that magic 50:50 mark.

Our entomologist in Holy Orders, the Reverend Dr David Agassiz, was unable to attend this year, so instead of the usual entomological grace, I performed a humanist blessing, which seemed to meet with satisfaction from all sides.  I reproduce it here if anyone feels like using it at a similar occasion.

As we come together at this special time, let us pause a moment to appreciate the opportunity for good company and to thank all those past and present whose efforts have made this event possible. As we go through life, the most important thing that we can collect is good memories.  Thank you for all being here today to share this meal as a treasured part of this collection.

And now to let the pictures tell the story.

Chris Lyal and Clive Farrell of the Entomological Club – “helping” at the registration desk

Three very illustrious (or should that be shiny) entomologists – Jeremy Thomas, Charles Godfray and Dick Vane-Wright

Richard Harrington and the winner of the Van Emden Bursary, PhD student Ellen Moss

Two of the more venerable Verrallers – Trevor Lewis and Marion Gratwick

Many Verrallers are young and quite a few are female 🙂

Adriana De Palma making a fuss about Erica McAlister’s new book 🙂

Some older entomologists enjoying the food and drink

The younger entomologists also had excellent appetites

The President of the Royal Entomological Society, Mike Hassell, wishes you all good health and happiness

Beards still feature among the younger end of the male Verrallers, although sadly it is no longer mandatory 🙂

And a bit of entomological bling to bring the show to an end 🙂

Many thanks to all who attended and I hope to see you all again next year, plus many new faces.

 

 

1 Comment

Filed under EntoNotes

Will Lucretia Cutter reign supreme? Beetle Queen – the latest sensation from M G Leonard

beetle-queen

https://www.chickenhousebooks.com/books/beetle-queen/

Laughter, tears, joy, horror and shock; what an emotional roller-coaster of a book.  From the gurgling stomach of a much-loved uncle to the charred rim of a once beetle-inhabited cup, Maya Leonard’s latest installment* of beetle-inspired fiction will grip and hold you spell-bound from the moment you start reading.  This is a book you won’t be able to put down, it will get in the way of everyday life, and will, depending on when you begin to read it, obscure your dinner plate or breakfast bowl.  Be warned, those of you who are moved to tears easily will definitely need a box of tissues or a large handkerchief close by.

It is very hard to write a review of this enthralling and fast-moving book without giving away too many spoilers, so I am going to limit myself to unstinting praise and a very brief synopsis of the plot to give you a flavour of what to expect 🙂

Metamorphosis is the name of the game. Lucretia Cutter has a devious plan, but Darkus, Bertolt and Virginia are on the case. Novak thinks that Darkus is dead, Bartholomew Cuttle is acting very strangely, Uncle Max is a tower of strength and Mrs Bloom reveals hidden depths. We learn more about the early days of Darkus’s parents and their interactions with the then Lucy Johnstone and meet some other entomologists.  Yellow ladybirds act as spies and assassins for Lucretia Cutter, and we travel to the film Awards in Los Angeles via Greenland with our resourceful trio, Uncle Max and Mrs Bloom.  Lurking in the background, the evil cousins Humphrey and Pickering provide comic, albeit distasteful relief.  All this leads us to the dramatic finale, where much is revealed including some parts which will especially amuse all the boys (old and young) 🙂

The shootout at the Film Awards ceremony where the evil Lucretia spectacularly reveals her hidden attributes, Novak performs gravity-defying feats, and giant motorised pooters come into their own to help our intrepid trio and their grown-up allies overcome the evil hordes, makes me think that one day we will be seeing Darkus and his friends on the silver screen.  There are of course great supporting roles by Baxter, Marvin, Newton and Hepburn, and do remember to brush up on your Morse code 🙂

This installment of the story ends at Christmas and the presents our heroes receive tell us that our next stop is the Amazon!

This book, like the first will definitely help bring the wonders of entomology to a wider audience.  Maya Leonard continues to be a worthy ambassador for our discipline, and I am extremely grateful that she has opted to use her undoubted talents to publicise insects and entomology so well.  Thank you Maya.

ento16-fantastic-finish

*If you haven’t read the first installment in this thrilling trilogy I can thoroughly recommend it.

 

2 Comments

Filed under Book Reviews, EntoNotes

An inordinate fondness for biodiversity – a visit behind the scenes at the Natural History Museum

Last week  (13th February) I traveled with the MSc Entomology students to the Natural History Museum, London.  As part of their course they are taken behind the scenes and meet some of the curators and their favourite beasts.  This one of my favourite course trips and although I have made the pilgrimage for many years I always find something new to marvel at as well as reacquainting myself with some of my old favourites.  After an early start (0645) we arrived exactly on time (for a change), 10.30, at the Museum site in South Kensington.  I always have mixed feelings about South Kensington, having spent twenty years of my life commuting to Imperial College, just up the road from the museum.  I loved teaching on the Applied Ecology course I ran, but over the years the working atmosphere in the Department became really toxic* and I was extremely glad to move to my present location, Harper Adams University.  After signing in, which with twenty students took some time, Erica McAlister (@flygirl) led us through the thronged galleries (it was half term) to the staff

nhm1

Nostalgia time, my first biological memory, aged 3.

areas, where the research, identification and curating takes place.  Our first port of call was the Diptera where Erica regaled us with lurid tales of flies, big and small, beneficial and pestiferous.

nhm2

Erica McAlister extolling the virtues of bot flies

nhm3

Any one fancy cake for tea?  Kungu cake, made from African gnats

nhm-mosq

Early advisory poster

As we left to move on to the Hymenopteran, hosted by David Notton, I noticed this classic poster warning against mosquitoes.  David chose bees as the main focus of his part of the tour, which as four of the students will be doing bee-based research projects was very apt.

nhm5

Admiring the bees

Whilst the students were engrossed with the bees I did a bit of fossicking and was amused to find that tobacco boxes were obviously a preferred choice by Scandinavian Hymenopterists in which to send their specimens to the museum.

nhm-tobacco

Finnish and Swedish tobacco boxes being put to good use

Next was that most eminent of Coleopterists, Max @Coleopterist Barclay who as usual enthralled the students and me, with stories of

nhm7

Max Barclay demonstrating a Lindgren funnel and talking about ‘fossilised’ dung balls

beetles large and small, anecdotes of Darwin and Wallace and the amusing story of how ancient clay-encased dung balls were for many years thought by anthropologists and archaeologists to be remnants of early humankind’s bolas hunting equipment.  It was only when someone accidentally broke one and found a long-dead dung beetle inside that the truth was revealed 🙂

nhm8

Often overlooked, the Natural History Museum is an exhibit in itself

 As we were leaving to move on to the Lepidoptera section, I felt obliged to point out to the students that not only is the outside of the museum stunningly beautiful but that the interior is also a work of art in itself, something that a lot of visitors tend to overlook. Once in the Lepidoptera section  Geoff Martin proudly displayed his magnificent collection of Lepidoptera, gaudy and otherwise, including the type specimen of the Queen Alexandra’s Birdwing which was captured with the aid of a shotgun!

nhm9

Lepidopterist, Geoff Martin, vying with his subjects in colourful appearance 🙂

Lunch and a chance to enjoy the galleries was next on the agenda.  Unfortunately, as it was half term this was easier said than done, although I did find a sunny spot to eat my packed lunch, as a Yorkshireman I always find the prices charged for refreshments by museums somewhat a painful.  In an almost deserted gallery I came across this rather nice picture.

nhm10

A lovely piece of historical entomological art.

Then it was on to the Spirit Collection.  Erica had laid on a special treat, Oliver Crimmen, fish man extraordinaire.  I may be an entomologist but I can sympathise with this branch of vertebrate zoology.  Fish, like insects are undeservedly ranked below the furries, despite being the most speciose vertebrate group.  I have been in the Spirit Room many times but have never seen inside the giant metal tanks.  Some of these, as Ollie demonstrated with a refreshing disregard for health and safety, are filled with giant fish floating in 70% alcohol.

nhm11

Fish man, Oliver Crimmen, literally getting to grips with his subjects.

nhm12

A fantastic end to the day culminated with a group photo with a spectacular set of choppers 🙂

Many thanks to Erica McAlister for hosting and organising our visit and to the NHM staff who passionately attempted to convert the students to their respective ‘pets’.

*one day I will write about it.

1 Comment

Filed under EntoNotes, Teaching matters, Uncategorized

EntoMasters on Tour – Visit to the Royal Entomological Society 2017

Yesterday I accompanied the Harper Adams University MSc Entomology and Integrated Pest Management students on their annual visit to the Headquarters of the Royal Entomological Society (RES), The Mansion House, located on the outskirts of the historic city of St Albans.

ontour-1

Harper Adams University entomologists, young and not so young 🙂  Photo by Jhman Kundun

Last year we had  a truly epic journey; accidents on the overcrowded UK motorway system on the way there and back, meant that we spent eight hours on the coach 😦  This year, in trying to avoid a similar fate, I cruelly forced the students and staff to be on the coach by 0645.

ontour2

Early morning entomologists; despite the hour, happy and smiling  – photo Alex Dye

Unfortunately, despite the early start, a diesel spill closed the M6 at a crucial moment causing huge queues and long detours.  As a result we arrived at our destination a frustratingly  hour and a half late.  Entomologists are however, made of stern stuff and the coffee and delicious biscuits awaiting our arrival soon restored our spirits.

ontour3

Coffee!

After coffee the RES Director of Science, Professor Jim Hardie, welcomed the students and talked about the history of the society and the benefits of joining as student members.  This was followed by a brief talk by one of the Outreach Team, Francisca Sconce, herself a former entomology Master’s student, about the many ways in which the RES brings the study and appreciation of insects to a wider audience.  The students were then treated to lunch and given the opportunity to explore the building and its facilities and to look at some of the treasures that the RES safeguards for posterity.

ontour4

Someone found the aphid section 🙂

ontour5

A future President? – trying out the presidential chair for size

ontour6

Dr Andy Cherrill enjoying the famous entomological lift (elevator)

I am no stranger to The Mansion House; I have taken several cohorts of the entomology MSc students to the Royal Entomological Society since the society moved its headquarters to St Albans in 2007, and also visit the building a couple of times a year when attending committee meetings.  Despite my long association with the RES (40 years) I still however, find things I have never seen before, such as the print below, that gently pokes fun at the single-mindedness of the entomological specialist.

ontour7

It is only a vertebrate  🙂

I also never cease to be amazed and humbled by the history that surrounds one as you meander your way around the various library rooms.

ontour8

 

ontour9

Printed history – as beautiful today as it was 400 years ago

We had a wonderful and educational day and you will be pleased to hear that our return journey was trouble-free.  Finally, many thanks to the Royal Entomological Society and staff for their extremely kind hospitality; the lunch was, as always, filling and delicious  🙂

Leave a comment

Filed under EntoNotes, Teaching matters

Entomologists – hirsutely stereotyped?

There is a general perception that entomologists* are bearded, eccentric elderly men, with deplorable dress sense, something I must confess I probably do little to dispel.

beard-1

Beard and entomologically-themed clothing – living the stereotype 🙂

Whilst it is certainly true that many Victorian entomologists fitted this description, it was and is not, a universal requisite for entomologists, although the images below may suggest otherwise.

beard-2

beard-3

Two views of the same beard

beard-4

Two famous (and bearded coleopterists) Charles Darwin and David Sharp – two great examples of an elderly entomological beard.

beard-5

Alfred Russel Wallace – often overlooked so have not paired him with Darwin 🙂

beard-6

Two examples of the weird (to me at any rate) under the chin beard.

beard-7

Elegant (?) entomologists; note not all are bearded 🙂  From the Aurelian’s Fireside Companion

 

To return to the proposition that male entomologists are facially hirsute, we need to answer the question, were, and are male entomologists different from the general population?  Up until the 1850s beards were fairly uncommon and usually associated with radical political views (Oldstone-Moore, 2005).  Entomologists were no exception, those from the 18th and early 19th centuries, being in the main, clean-shaven, well-dressed gentlemen, or so their portraitists would have us believe.

beard-8

Entomologists also remained relatively clean-shaven up to the 185os, as these pictures of two entomologists who became famously bearded in later life show.

beard-9

Charles Darwin, fairly clean-shaven, but sporting fashionable side boards, 1854, pre-Crimean War, and a youthful, clean-shaven Alfred Russel Wallace.

After the 1850s, beards and bushy side boards began to be seen as a sign of masculinity (Oldstone-Moore, 2005).  This was further reinforced as a result of the conditions during the Crimean War where due to the freezing conditions and lack of shaving soap, beards became commonplace among the soldiers.  Beards were then seen as a sign of the hero, hence the adoption by many civilian males of the time (Oldstone-Moore, 2005).  This sporting of facial hair was not just confined to entomologists, as the pictures of my great-great-grandfather and his cousin show.

beard-10

Two Victorian civil engineers – my great-great grandfather John Wignall Leather and his cousin, John Towlerton Leather.

Entomologists were however, still very much bearded at the end of the century.

beard-11

A group of entomologists from the north-west of England in the 1890s.  Some impressive beards and moustaches; from the Aurelian’s Fireside Companion

So during the latter half of the 19th century, it would seem that male entomologists were no different from any other male of the time.

The full beard, except for those associated with the Royal Navy, started to disappear soon after the beginning of the 20th Century; the Boer Wars and the First World War hastening its departure.  Moustaches were still common however, and many entomologists remained resolutely bearded until the 1920s, although perhaps not as luxuriantly so as some of their 19th century predecessors.

beard-12

A group of entomologists from 1920 https://en.wikipedia.org/wiki/Percy_Ireland_Lathy#/media/File:BulletinHillMuseum1923.jpg

It is surprisingly difficult to find group photographs of entomologists on the internet, so I have been unable to do a robust analysis of the proportions of bearded entomologists through the ages.  Two of the most influential entomologists of the first half of the last century were however, most definitely clean-shaven.

beard-13

Sir Vincent Wigglesworth (1899-1994) and A D Imms (1880-1949), the authors of my generation’s two entomological ‘bibles’.  Definitely clean shaven.

The 1960s and 1970s were renowned for the hairiness of males in general (at least those in the West) and this especially spread into the world of students, many of whom were entomologists.  My memories of those times of attending meetings of the Royal Entomological Society and the British Ecological Society are of a dominance of beards among the male delegates and not just those in their twenties, but then memory is a funny thing.  I was, for example, lucky enough to attend the Third European Congress of Entomology held in Amsterdam in 1986.  My memory is of many bearded entomologists, but looking at the photograph of the delegates only 30% of the male delegates are bearded.

beard-14

The third European Congress of Entomology, Amsterdam 1986 – I am there, suitably bearded 🙂  The eagle-eyed among you may be able to spot a young John (now Sir John) Lawton, also bearded.

More shocking is the fact that the photograph shows that less than 20% of the delegates were female.  Times have changed since then, and as the two recent photos below show, we now have more female entomologists and fewer beards, the former a very positive trend, that I heartily endorse, the latter, something I am less happy about 🙂

beard-15

IOBC Meeting 2015 https://www.iobc-wprs.org/images/20151004_event_wg_field_vegetables_Hamburg_group_photo.jpg

beard-16

Entomological Society of America 2016

Generally speaking, it seems that beards are in decline and female entomologists are on the rise, something that I have, in my position as the Verrall Supper Secretary of the oldest extant entomological society in the world been at pains to encourage.

As to the matter of entomological eccentricity, that is another thing entirely.  As far as most non-entomologists are concerned anyone who loves insects and their allies is somewhat eccentric, and if that is indeed the case then I am happy to be considered eccentric.

beard-17

Me, happy with my head in a net

Eccentricity is not just confined to those of us in our dotage.

beard-18

A modern day eccentric?  Josh Jenkins-Shaw ex-MSc Entomology Harper Adams University, now pursuing a PhD at the Natural History Museum of Denmark at the University of Copenhagen resolving the biogeography of Lord Howe Island using beetle phylogenetics, mostly the rove beetle subtribe Amblyopinina.

beard-19

A selection of entomologist from our Department at Harper Adams University – not all bearded but we are all wearing antennae!

beard-20

Perhaps Santa Claus is an entomologist!

Merry Christmas to all my readers 🙂

 

References

Oldstone-Moore, C. (2005) The beard movement in Victorian Britain.  Victorian Studies, 48, 7-34.

Salmon, M.J. & Edwards, P.J. (2005) The Aurelian’s Fireside Companion.  Paphia Publishing Ltd. Lymington UK.

 

*That is of course if they know the meaning of the word.  I am constantly being surprised by the number of people who ask what an entomologist is and as for the ways in which entomology is spelt by the media, words fail me 🙂

 

 

13 Comments

Filed under EntoNotes, The Bloggy Blog

Insects in flight – whatever happened to the splatometer?

I have been musing about extinctions and shifting baselines for a while now; BREXIT and an article by Simon Barnes in the Sunday Times magazine (3rd September 2016) finally prompted me to actually put fingers to keyboard.  I fear that BREXIT will result in even more environmental damage than our successive governments have caused already.  They have done a pretty good job of ignoring environmental issues and scientific advice (badgers) even when ‘hindered’ by what they have considered restrictive European legislation and now that we head into BREXIT with a government not renowned for its care for the environment I become increasing fearful for the environment. Remember who it was who restructured English Nature into the now fairly toothless Natural England, because they didn’t like the advice they were being given and whose government was it who, rather than keep beaches up to Blue Flag standard decided to reclassify long-established resort beaches as not officially designated swimming beaches?  And, just to add this list of atrocities against the environment, we now see our precious ‘green belt’ being attacked.

My generation is liable to wax lyrical about the clouds of butterflies that surrounded us as we played very non PC cowboys and Indians outside with our friends in the glorious sunshine.  We can also fondly reminisce about the hordes of moths that used to commit suicide in the lamp fittings or beat fruitlessly against the sitting room windows at night.  The emptying of the lamp bowl was a weekly ceremony in our house.  We also remember, less fondly, having to earn our pocket-money by cleaning our father’s cars, laboriously scraping the smeared bodies of small flies from windscreens, headlamps and radiator grilles on a Saturday morning.  A few years later as students, those of us lucky enough to own a car, remember the hard to wash away red smears left by the eyes of countless Bibionid (St Mark’s) flies, as they crashed into our windscreens.

splat-1

Typical Bibionid – note the red eyes; designed specially to make a mess on your windscreen 🙂 https://picasaweb.google.com/lh/photo/GBgoGHhRbj-eUUF9SxZ4s9MTjNZETYmyPJy0liipFm0?feat=embedwebsite

Are these memories real or are we looking back at the past through those rose-tinted glasses that only show the sunny days when we lounged on grassy banks listening to In the Summertime and blank out the days we were confined to the sitting room table playing board games?

We have reliable and robust long-term data sets showing the declines of butterflies and moths over the last half-century or so (Thomas, 2005; Fox, 2013) and stories about this worrying trend attract a lot of media attention. On a less scientific note, I certainly do not find myself sweeping up piles of dead moths from around bedside lamps or extricating them from the many spider webs that decorate our house.  Other charismatic groups, such as the dragonflies and damselflies are also in decline (Clausnitzer et al., 2009) as are the ubiquitous, and equally charismatic ground beetles (carabids) (Brooks et al., 2012).  But what about other insects, are they too on the way out?  A remarkable 42-year data set looking at the invertebrates found in cereal fields in southern England (Ewald et al., 2015) found that of the 26 invertebrate taxa studied less than half showed a decrease in abundance; e.g. spiders, Braconid parasitic wasps, carabid beetles, Tachyporus beetles, Enicmus (scavenger beetles), Cryptophagid fungus beetles, leaf mining flies (Agromyzids), Drosophila, Lonchopteridae (pointed wing flies), and surprisingly, or perhaps not, aphids.  The others showed no consistent patterns although bugs, excluding aphids, increased over the study period.  Cereal fields are of course not a natural habitat and are intensely managed, with various pesticides being applied, so are perhaps not likely to be the most biodiverse or representative habitats to be found in the UK.

But what about the car-smearing insects, the flies, aphids and other flying insects?  Have they declined as dramatically?  My first thought was that I certainly don’t ‘collect’ as many insects on my car as I used to, but is there any concrete evidence to support the idea of a decline in their abundance.  After all, there has been a big change in the shape of cars since the 1970s.

splat-2

Top row – cars from 1970, including the classic Morris 1000 Traveller that my Dad owned and I had to wash on Saturdays.

Bottom row the cars of today, sleek rounded and all looking the same.

 

Cars were  much more angular then, than they are now, so perhaps the aerodynamics of today’s cars filter the insects away from the windscreen to safety? But how do you test that?  Then I remembered that the RSPB had once run a survey to address this very point.  Sure enough I found it on the internet, the Big Bug Count 2004, organised by the RSPB.  I was very surprised to find that it happened more than a decade ago, I hadn’t thought it was that long ago, but that is what age does to you 🙂

splat-3

The “Splatometer” as designed by the RSPB

The idea, which was quite cool, was to get standardised counts of insect impacts on car number platesThe results were thought to be very low as the quote below shows, but on what evidence was this based?

“Using a cardboard counting-grid dubbed the “splatometer”, they recorded 324,814 “splats”, an average of only one squashed insect every five miles. In the summers of 30-odd years ago, car bonnets and windscreens would quickly become encrusted with tiny bodies.”  “Many people were astonished by how few insects they splatted,” the survey’s co-ordinator Richard Bashford, said.

Unfortunately despite the wide reporting in the press at the time, the RSPB did not repeat the exercise.  A great shame, as their Big Garden Birdwatch is very successful and gathers useful data.   So what scientific evidence do we have for a decline in these less charismatic insects?  Almost a hundred years ago, Bibionid flies were regarded as a major pest (Morris, 1921) and forty years ago it was possible to catch almost 70 000 adults in a four week period from one field in southern England (Darcy-Burt & Blackshaw, 1987).   Both these observations suggest that in the past Bibionids were very common.  It is still possible to pluck adult Bibionids out of the air (they are very slow, clumsy fliers) in Spring, but if asked I would definitely say that they are not as common as they were when I was a student.  But as Deming once said, “Without data, you’re just another person with an opinion.”  In the UK we are fortunate that a long-term source of insect data exists, courtesy of Rothamsted Research, the longest running agricultural research station in the world.  Data have been collected from a nationwide network of suction and light traps for more than 50 years (Storkey et al., 2016).   Most of the publications arising from the survey have tended to focus on aphids (Bell et al., 2015) and moths (Conrad et al., 2004), although the traps, do of course, catch many other types of insect (Knowler et al., 2016).  Fortuitously, since I was interested in the Bibionids I came across a paper that dealt with them, and other insects likely to make an impact on cars and splatometers (Shortall et al., 2009).  The only downside of their paper was that they only looked at data from four of the Rothamsted Suction Traps, all from the southern part of the UK, which was a little disappointing.

splat-4

Location and results of the suction traps analysed by Shortall et al. (2009).

Only three of the trap showed downward trends in insect biomass over the 30 years (1973-2002) analysed of which only the Hereford trap showed a significant decline.  So we are really none the wiser; the two studies that focus on a wider range of insect groups (Shortall et al., 2009; Ewald et al., 2015) do not give us a clear indication of insect decline.   On the other hand, both studies are limited in their geographic coverage; we do not know how representative the results are of the whole country.

What a shame the RSPB stopped collecting ‘splatometer’ data, we would now have a half-decent time series on which to back-up or contradict our memories of those buzzing summers of the past.

Post script

After posting this I came across this paper based on Canadian research which shows that many pollinators, possibly billions are killed by vehicles every year.

References

Bell, J.R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., Shortall, C.R., Taylor, M.S., Verrier, P. & Harrington, R. (2015) Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids.  Journal of Animal Ecology, 84, 21-34.

Brooks, D.R., Bater, J.E., Clark, S.J., Montoth, D.J., Andrews, C., Corbett, S.J., Beaumont, D.A., & Chapman, J.W. (2012) Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss of insect biodiversity. Journal of Applied Ecology, 49, 1009-1019.

Clausnitzer, V., Kalkman, V.J., Ram, M., Collen, B., Baillie, J.E.M., Bedjanic, M., Darwall, W.R.T., Dijkstra, K.D.B., Dow, R., Hawking, J., Karube, H., Malikova, E., Paulson, D., Schutte, K., Suhling, F., Villaneuva, R.J., von Ellenrieder, N. & Wilson, K. (2009)  Odonata enter the biodiversity crisis debate: the first global assessment of an insect group.  Biological Conservation, 142, 1864-1869.

Conrad, K.F., Woiwod, I.P., Parsons, M., Fox, R. & Warren, M.S. (2004) Long-term population trends in widespread British moths.  Journal of Insect Conservation, 8, 119-136.

Darcy-Burt, S. & Blackshaw, R.P. (1987) Effects of trap design on catches of grassland Bibionidae (Diptera: Nematocera).  Bulletin of Entomological Research, 77, 309-315.

Ewald, J., Wheatley, C.J., Aebsicher, N.J., Moreby, S.J., Duffield, S.J., Crick, H.Q.P., & Morecroft, M.B. (2015) Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years. Global Change Biology, 21, 3931-3950.

Fox, R. (2013) The decline of moths in Great Britain: a review of possible causes. Insect Conservation & Diversity, 6, 5-19.

Knowler, J.T., Flint, P.W.H., & Flint, S. (2016) Trichoptera (Caddisflies) caught by the Rothamsted Light Trap at Rowardennan, Loch Lomondside throughout 2009. The Glasgow Naturalist, 26, 35-42.

Morris, H.M. (1921)  The larval and pupal stages of the Bibionidae.  Bulletin of Entomological Research, 12, 221-232.

Shortall, C.R., Moore, A., Smith, E., Hall, M.J. Woiwod, I.P. & Harrington, R. (2009)  Long-term changes in the abundance of flying insects.  Insect Conservation & Diversity, 2, 251-260.

Storkey, J., MacDonald, A.J., Bell, J.R., Clark, I.M., Gregory, A.S., Hawkins, N. J., Hirsch, P.R., Todman, L.C. & Whitmore, A.P. (2016)  Chapter One – the unique contribution of Rothamsted to ecological research at large temporal scales Advances in Ecological Research, 55, 3-42.

Thomas, J.A. (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups.  Philosophical Transactions of the Royal Society B, 360, 339-357

8 Comments

Filed under EntoNotes, Uncategorized

You don’t need charismatic mega-fauna to go on an exciting safari

I got very annoyed the other day; the Zoological Society of London (Institute of Zoology) released what they termed a ”landmark report”.  I guess you can all immediately see why I was annoyed.  The headline of the press release very clearly states that global wildlife populations are on course to decline by 67% by 2020.  What their report actually says is that global vertebrate populations are on course to decline.

safari-1

https://www.zsl.org/science/news/landmark-report-shows-global-wildlife-populations-on-course-to-decline-by-67-per-cent

Plants and invertebrates are a much bigger and more important part of global wildlife than the tiny fraction of the world’s species contributed by those animals with backbones. I instantly posted a Tweet pointing out that for a scientific institution this was a highly inaccurate statement to be promulgating.

safari-2

My comment (still ignored by them) at the ZSL press release

The ZSL despite being copied into the Tweet, have so far (three weeks later), not deigned to reply.  I have taken the ZSL to task before with equally little success.  To give them credit where it is due however, just over four years ago they did release Spineless, a report about the global status of invertebrates, although the press release associated with this was a much more low-key affair then the recent one that I took exception to 🙂

Dr. Ben Collen*, head of the Indicators and Assessments unit at ZSL says: “Invertebrates constitute almost 80 per cent of the world’s species, and a staggering one in five species could be at risk of extinction. While the cost of saving them will be expensive, the cost of ignorance to their plight appears to be even greater”.

ZSL’s Director of Conservation, Professor Jonathan Baillie added: “We knew that roughly one fifth of vertebrates and plants were threatened with extinction, but it was not clear if this was representative of the small spineless creatures that make up the majority of life on the planet. The initial findings in this report indicate that 20% of all species may be threatened. This is particularly concerning as we are dependent on these spineless creatures for our very survival.

Unlike Ryan Clark who was also stimulated to write a protest blog in response to the same article, I do have something against vertebrates; they suck away valuable research funding and resources away from the rest of the animal kingdom (Leather, 2009; Loxdale, 2016) and distract attention and people away from invertebrate conservation efforts (Leather, 2008; Cardoso et al., 2011).  I have highlighted two sentences in the above quotes from the Spineless press release for very obvious reasons and wish that ZSL had taken these words to heart.  If, however, you go to their research page it would seem that these were only empty promises as less than 10% of their projects deal with invertebrates.  It is at times like this that I take comfort in the knowledge that I am not alone in despairing of the unfair treatment that invertebrates and the people that work with them suffer.

safari-3

Sums it up nicely, despite the focus on marine invertebrates 🙂

I had a few minutes of relief after posting my Tweet about the ZSL and their lack of scientific integrity, but I still felt frustrated and annoyed.  The need to do something further preyed on my mind, and then I had an idea. What about highlighting the charismatic mega-fauna that the ZSL and other similar bodies persist in ignoring.  I went on a quick photographic safari and in a few minutes was able to produce a little visual dig at the fans of the so-called charismatic mega-fauna.

safari-4

Going on safari as an entomologist

I thought this might raise a few appreciative likes from fellow entomologists and got back to work. I logged into Twitter a couple of hours later and was gratified, if somewhat surprised, to find that my Tweet seemed to have generated a bit of interest and not just from my followers.

safari-5

Appreciative tweets and comments from fellow invertebrate lovers – click on the image to enlarge it

I had also been translated into Spanish!

safari-6

Reaching the non-English speaking world 🙂

Then the Twitter account for the journal Insect Conservation & Diversity asked if anyone had other examples and generated a bit of a mini-Twitter storm with some great additions to the list.

 

safari-7

I particularly liked the Buffalo tree hopper.

And then something I didn’t know existed happened –

safari-8

I got a Gold Star!

This number of likes far exceeded my previous best-ever tweet, by a very long way.  Seriously though, it made me think about what makes some

safari-9

My previous best Tweet.

Tweets so much more retweetable than others.  My invertebrate safari tweet didn’t go viral, my understanding is that viral tweets are those that are retweeted thousands of times, but it certainly had an impact on people’s lives, however fleetingly.

safari-tweet

Having an impact, albeit not viral.

For those of you not up on Twitter analytics, what this means is that as of November 9th  2016, more than 33,000 people had seen my Tweet, of which almost 2000 had taken the trouble to click on it to make it bigger.  Of those 33,000 who saw it almost 400 went to the trouble to click the Like button and 260 re-tweeted it.  On the other hand, my serious taking the

safari-11

Not so great an impact, but at least it was read by a few people 🙂

ZSL to task tweet,  attracted much less attention, although one could argue that it was dealing with a much more serious issue.  That aside, responses like this and the other many positive outcomes I have had since I joined Twitter make me even more convinced that Tweeting and blogging are incredibly useful ways of interacting with both the scientific community and general public and getting more people to truly appreciate the little things that run the world.  Hopefully the ZSL, government funding agencies and conservation bodies will take notice of the plea by Axel Hochkirch (2016) to invest in entomologists and hence protect global biodiversity.

safari

A timely reminder (Hochkirch, 2016)

 

And finally, to end on a lighter note, please nominate and highlight your own favourite ‘charismatic mega-fauna invertebrates’.  There are many more out there.

safari-12

Another view of the Buffalo tree hopper  http://www.birddigiscoper.com/blogaugbug133a.jpg  photograph by Mike McDowell

 

References

Cardoso, P., Erwin, T.L., Borges, P.A.V., & New, T.R. (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144, 2647-2655.

Hochkirch, A. (2016) The insect crisis we can’t ignore.  Nature, 539, 141.

Leather, S.R. (2008) Conservation entomology in crisis? Trends in Ecology and Evolution, 23, 184-185.

Leather, S.R. (2009) Taxonomic chauvinism threatens the future of entomology. Biologist, 56, 10-13.

Loxdale, H.D. (2016) Insect science – a vulnerable discipline? Entomologia experimentalis et applicata, 159, 121-134.

 

 

*The lead author of the report, Ben Collen was a former undergraduate student of mine, but hard as I tried, I was unable to convert him to the joys of entomology 🙂

 

5 Comments

Filed under Bugbears, EntoNotes

An aphid is… a flea, a louse, and even a marine mammal!

Earlier this year I wrote about the debate that rages about the correct way to talk about thrips during which I got distracted and ended up writing about their names in different languages. It turns out that I am not alone in being curious about international insect naming. I have just finished reading Matthew Gandy’s excellent book Moth, where he waxes lyrical about the different names used to describe butterflies and moths around the world.  This, of course, made me wonder what aphid would turn up, so armed with dictionaries and Google Translate, I traveled the world to see what I could discover.

anaphidis-1

The bronze-brown dandelion aphid, Uroleucon taraxaci – Photo by Jasper Hubert

There are a lot of languages so I am only going to highlight a few versions of aphid that I found interesting or surprising.  According to The Oxford English Dictionary, Linneaus coined the word Aphides, which may (or not) have been inspired by the Ancient Greek  ἀφειδής‎ (apheidḗs) meaning unsparing, perhaps in relation to their rapid reproduction and feeding habits.  The modern spelling of aphid seems to have come into being after the Second World War, although you could still find aphides being used in the late 1940s (e.g. Broadbent et al., 1948; Kassanis, 1949), and it can still be found in more recent scientific literature where the journal is hosted in a non-English speaking country.

Many aphid names are very obviously based on the modern Latin word coined by Linneaus, although in some countries more than one name can be used, as in the UK where aphid is the technical term but blackfly and green-fly are also commonly used.

 

Aphide derived names

Albanian              afideja

English                  aphid

French                  aphide

Hindu                    एफिड ephid

Portuguese         afídio

Spanish                áfido

 

More common are those names that relate to the vague resemblance that aphids have to lice and to their plant feeding habit. The term plant lice to describe aphids was commonly used in the scientific literature up and into the early 1930s (e.g. Mordvilko, 1928; Marcovitch, 1935).

 

Names linked to the putative resemblance to lice and their plant feeding habit

Bosnian                lisna uš                 uš is louse, lisna derived from leaf

Bulgarian             listna vŭshka     vŭshka louse, listna plant leaf

Danish                  bladlaus               blad is leaf, laus louse

Dutch                    bladluis                blad is leaf, luis is louse

Estonian               lehetäi                  leht is leaf, tai is louse

German                Blattlaus               blatt is leaf, laus is louse

Greek                   pseíra ton fytón louse on plant

Hungarian           levéltetű               leve is leaf, tetű is louse

Icelandic              lús or blaðlús     lús is louse, blað is plant

Latvian                  laputs                   lapa is, uts is louse

Norwegian          bladlus                 blad is plant, lus is louse

Swedish               bladlus                 as for Norwegian

 

If you draw siphunculi on to a louse and add a cauda to the rear end you can just about see the resemblance.

anaphidis-2-jpg

Louse with added siphunculi and cauda

 

Names based on the premise that aphids resemble fleas

French  puceron                  puce is flea

Spanish pulgón                   pulga is flea

anaphidis-3-jpg

Flea with cauda and siphunclus, but still only a poor imitation of the real thing.  Even with added aphid features I don’t see the resemblance 🙂

 

In Turkish, aphid is yaprak biti which roughly translates to leaf biter.  There are then a few languages where there appears to be no connection with their appearance or feeding habit.

 

Other names for aphid

Basque                 zorri

Chinese                蚜

Filipino                 dapulak

Finnish                  kirva

Lithuanian           Mszyca

Tamil                     அசுவினி Acuviṉi

Welsh                   llyslau

Xhosa                    zomthi

 

In Lithuanian, where aphid is Mszyca, which looks like it might be derived from Myzus, an important aphid genus, aphid also translates to amaras which means blight.  In the case of a heavy aphid infestation, this is probably an apt description.  I was also amused to find that whilst the Welsh have a name for aphid, Scottish Gaelic does not.

My all-time favourite, and one for which I can find no explanation at all, is dolphin.  According to Curtis (1845), aphids on cereals in some counties of England were known as wheat dolphins.  I was also able to trace the use of this name back to the previous century (Marsham, 1798), but again with no explanation why this name should have arisen.

anaphidis-4

The wheat dolphin 🙂

References

Broadbent, L., Doncaster, J.P., Hull, R. & Watson, M.A. (1948) Equipment used for trapping and identifying alate aphides.  Proceedings of the Royal Entomological Society of London (A), 23, 57-58.

Curtis, J. (1845) Observations on the natural history and economy of various insects etc., affecting the corn-crops, including the parasitic enemies of the wheat midge, the thrips, wheat louse, wheat bug and also the little worm called Vibrio. Journal of the Royal Agricultural Society, 6, 493-518.

Gandy, M. (2016) Moth, Reaktion Books, London

Kassanis, B. (1949) The transmission of sugar-beet yellows virus by mechanical inoculation. Annals of Applied Biology, 36, 270-272.

Marcovitch, S. (1935) Experimental evidence on the value of strip farming as a method for the natural control of injurious insects with special reference to plant lice. Journal of Economic Entomology, 28, 62-70.

Marsham, T. (1798) XIX. Further observations on the wheat insect, in a letter to the Rev. Samuel Goodenough, L.L.D. F.R.S. Tr.L.S.  Transactions of the Linnaean Society of London, 4, 224-229.

Mordvilko, A. (1928) LXX.—The evolution of cycles and the origin of Heteroecy (migrations) in plant-lice , Annals and Magazine of Natural History: Series 10, 2, 570-582.

4 Comments

Filed under Aphids, EntoNotes